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Authoring with Eclipse

Summary

The topic of technical publishing is relatively new to the world of Eclipse. One can
make the argument that technical publishing is just another collaborative
development process involving several people with different backgrounds and skills.
This article will show that the Eclipse platform is a viable platform for technical
publishing by discussing how to write documents such as an article or a book within
Eclipse. In fact, this article was written using Eclipse.
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Environment
The examples in this article were built and tested with:

Eclipse 3.1
Eclipse Web Tools Platform (WTP) 1.0
Orangevolt XSLT 1.0.4

Introduction
The authors of this document view technical documentation as another development process that
shares the same characteristics as a software process. In technical publishing, you have writers,
editors, typesetters, QA reviewers, and so on. Technical publishing is a collaborative process
that currently lacks the tools to facilitate collaboration. The goal of this article is two-fold: give
an introduction to technical documentation and show, through an example, how Eclipse can
help make technical documentation a collaborative process.

Technical Documentation
In the open source world, technical documentation is primarily accomplished using two popular
formats: DocBook and the Darwin Information Typing Architecture (DITA). These two formats
share two important characteristics: they are both systems for creating structured documents
using XML and both focus on content that is written in plain text (or in an editor such as
OpenOffice). In this article we focus on DocBook because of our familiarity with the format.
However, we will also provide complementary DITA information where appropriate.

If you're unfamiliar with DocBook, there's an article on the IBM®
developerWorks® site by Joe Brockmeier that can serve as a gentle
introduction. There is also an introduction to DITA on developerWorks.

http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.1-200506271435/eclipse-SDK-3.1-win32.zip
http://download.eclipse.org/webtools/downloads/drops/R-1.0-/
http://eclipsexslt.sourceforge.net/
http://www-128.ibm.com/developerworks/library/l-docbk.html
http://www-128.ibm.com/developerworks/xml/library/x-dita1/index.html
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The technical documentation process can be broken down into three broad stages: creation,
review, and publication.

Creation simply refers to populating a document with content that adheres to whatever format
you choose to write against. This document is usually edited using an XML editor of choice,
although it can be edited with any text editor as well. In this article we will use WTP's XML
editor to edit documents.

Once an initial version of the content has been written, it is typically handed off to one or more
trusted colleagues for review. The role of these reviewers is to ensure technical accuracy and
improve the quality of the writing. The comments and suggestions gathered from the review
stage are then used by the document's authors to create a final revision of the document.

The final revision of a document involves making it is ready for publication. When authoring in
an XML format, you must eventually transform the document must be transformed from XML
to a human-readable format (that is, one that has both style and formatting applied) such as
HTML or PDF. Once in a human-readable format, the document is ready to be published by a
selected publisher.

Advantages of an XML format

Before diving into an actual example of the technical documentation process using Eclipse, let's
take a look at some of the benefits of authoring in an XML format.

There are four advantages to authoring in XML that really show the benefit of this format:
modularity, version control, consistent formatting, and publishing to multiple formats.

Modularity

XML formats such as DocBook and DITA are modular. This allows you to break up
your documents into multiple sections, which can be automatically combined into one
document using transformation during the publication stage. Modularizing your
documents can be very beneficial when working on large documents, such as a book, or
when working with multiple authors. As an example, the book Java Web Application
Development with Eclipse (set to be published in time for EclipseCon 2006), was
written in DocBook. The book was structured with one table of contents XML file and
a separate file for each chapter. Of course, it's up to you to determine the structure that
works best for your project. The key is that by using an XML format, you have the
freedom to configure your document's structure.

Version Control
Version control is very useful and has become a staple in most development processes.
Why is it, then, that a system that allows you to maintain the complete history of your
files, allowing you to revert to a previous version at any time, is not part of the
authoring process? One reason is that many documents are authored using word-
processing tools that mix formatting information and content, such as Microsoft® Word
or Corel WordPerfect. This mix results in files containing many changes between
revisions, reducing the usefulness of version control because it is difficult to view the
relevant changes between versions of the document. XML formats do not suffer from
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this problem as they are content-specific. Authoring in an XML format allows you to
use a version control system and reap the benefits that go with it.

Consistent Formatting
Ensuring that your document is consistently formatted is a time-consuming aspect of
the authoring process. This task can be further aggravated when the authoring format
mixes content and formatting in one document or when working with multiple authors
or files. One of the typical final steps in the authoring process is ensuring that your
document uses consistent formatting. Using an XML format solves the consistent
formatting problem by separating your document's content from its formatting. In the
XML case, formatting can be applied uniformly to your entire document using a style
sheet. An XML format saves you time and guarantees consistent formatting.

Publishing to Multiple Formats
By separating your document's formatting from its content, you gain an enormous
freedom. Documents authored in the XML format are not bound by one set of
formatting rules. This means that you can author an article, such as this one, and create
an HTML version, a PDF version, and even an Eclipse help system version simply by
transforming your document with different style sheets. In fact, DocBook includes all
three of these stylesheets allowing you to easily publish to any of the formats listed
above.

Examples
To show the authoring tool chain in Eclipse, this article will use a sample book document from
the DocBook XSL project. The XML version of the document can be seen here. This DocBook
source for this article is also available and can be seen here.

Tool Chain

A tool chain is a set of tools that are used to create a more complex tool or product. The tools
may be used in a chain, so the output of each tool becomes the input of the next [3] . This
concept should be very familiar to those who work on the UNIX®, Linux®, and AIX®
platforms, for example, where the output of one command line tool is typically piped to the
next tool, allowing complex operations to be performed using several simple tools.

The beginning of our technical publishing tool chain is the WTP XML editor, which we use to
edit our content. After we have finished editing the content, we will feed the output of what we
edited into OrangeVolt, an XSLT transformation engine, which will use style sheets to publish
the content into a human-readable format.

The limitation we put on these examples is that our tool chain, including all three stages,
creation, review, and publication, will be built with tools available within Eclipse. From our
experience, Eclipse has enormous potential as an integrated documentation development
environment. In the following sections, we'll discuss how you can make this a reality with
current Eclipse tooling and where the tooling falls short.

Creation and Review

http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/files/book.xml
http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.xml
http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.html#toolchain
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Although creation and review are two separate parts of the technical documentation process, the
same tools are required and therefore will be discussed together.

As you may already know, the Eclipse project is composed of serveral top-level projects
including Eclipse itself (known as the Eclipse base) and the WTP project. WTP adds many tools
to the Eclipse base including an XML editor with graphical and source representations of the
content. Although the graphical editor is useful for viewing your document, we've found that
the source editor, shown in Figure 1, “The XML Source Editor” , is more useful when
authoring in XML.

Figure 1. The XML Source Editor

The XML editor provides many of the Eclipse franchise functions that Java™ developers have
become accustomed to with the Java editor.

Content Assistance

http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.html#xml-source-editor
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Gives you a list of valid XML elements constrained by an associated grammar.

Syntax Highlighting

Gives you improved code readability by making certain errors instantly visible.

Validation

Ensures validity of an XML document based on an associated grammar.

Outline View

Assists you in editing and viewing the content of your document.

XML Catalog

Allows you to register Document Type Definitions (DTD) and XML Schema grammars
associated with your document with your workspace so you can work with the benefits
of validation while disconnected from the Internet.

Aside from the benefits of the XML editor, working in Eclipse provides other benefits. Eclipse
includes integrated version control for CVS. (There is also a freely available plug-in for
subversion [6], another version control system.) Integrated version control allows you to check
your changes into, and view others' changes in, your version control system from within
Eclipse. These tools are also useful for your reviewers, who, if you give them permission, can
add comments and suggestions to your document and check their changes in. Giving your
reviewers permission to make these changes allows you to avoid the need to use e-mail or some
other communication mechanism.

Publication

The DocBook XSL [1] and DITA [2] projects offer numerous transformations, including HTML
and PDF formats. The most common transformation technique is to use an Ant file with the
appropriate tasks for the various transformations. In this article we use the Orangevolt XSLT
tool to simplify this task. Orangevolt XSLT integrates into the familiar Eclipse launcher
framework. This integration allows you to select the style sheet and pass in necessary
parameters for the transformation.

The DITA Open Toolkit (DITA-OT) includes a DITA to DocBook
transformation .

Along with the description in this article, we have provided Flash movies that demonstrate how
to perform each transformation. Transformations for both DocBook and DITA will be provided
where appropriate.

HTML

Of all the available transformations, transforming your document into HTML is the easiest to

http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.html#subversion
http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.html#docbookxsl
http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.html#dita
http://dita-ot.sourceforge.net/doc/DITA-antscript.html
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use. All that you need to do is create a proper transformation launch configuration and run the
transformation. Specifically, you need to specify the correct style sheet:

DocBook

html/docbook.xsl

DITA

xsl/dita2html.xsl
Figure 2, “Sample HTML Transformation Configuration for book.xml” shows a sample
transformation configuration that will transform our DocBook sample document into HTML.

Figure 2. Sample HTML Transformation Configuration for book.xml

You can augment the transformation by passing parameters to the style
sheet. There's a full listing of DocBook XSL parameters that can be used
to configure the transformation located here .

A Flash movie that shows how to run the transformation can be seen here .

http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.html#html-transformation
http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/files/book.xml
http://docbook.sourceforge.net/release/xsl/current/doc/html/
http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/files/DocBook-HTML.htm


10/13/09 12:34 PMAuthoring with Eclipse

Page 7 of 12http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.html

PDF

Transforming a DocBook XML file to PDF format is more involved than the transformation to
HTML but it is still possible using a style sheet. The difference lies in a task that must be
performed before the actual transformation. So, the transformation from XML to PDF is a two-
step process.

Step one is to generate an XSL formatting objects (XSL-FO) document. This document will
then be transformed into a PDF. In order to generate an XSL-FO document, you need to use the
following stylesheet: fo/docbook.xsl. Figure 3, “Sample XSL-FO Transformation Configuration
for book.xml” shows a sample transformation configuration used to generate an XSL-FO
document from book.xml.

Figure 3. Sample XSL-FO Transformation Configuration for book.xml

Step two is to use a Formatting Objects Processor (FOP) to transform your XSL-FO document
into a PDF. One of the more popular open source FOPs is the Apache FOP . We'll use a third-
party plug-in from Ahmadsoft that integrates Apache FOP into Eclipse. After installing this
plug-in, all that you need to do to render the XSL-FO document is run the FOP transformation.

http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.html#xslfo-transformation
http://xmlgraphics.apache.org/fop/
http://www.ahmadsoft.org/fopbridge.html
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Figure 4, “Sample FOP Transformation” shows an example of running the FOP transformation.

Figure 4. Sample FOP Transformation

The example includes a sample Ant file that performs the same
transformation as running the FOP transformation using the plug-in from
Ahmadsoft . An Ant script is a popular method of performing the
publishing stage, and this example should give you a good starting point
if you'd prefer to go this route. The DITA project already includes an Ant
script (found in ant/sample_pdf.xml in DITA-OT) to perform this exact
task on DITA source files.

As before, a Flash movie that shows the transformation is available here .

Eclipse Infocenter

In our opinion, one of the coolest features of the DocBook and DITA projects is the generation
of an Eclipse help plug-in (information center) from your source XML file. In order to perform
this transformation in DocBook, you need to specify a few parameters and use the following
style sheet: eclipse/eclipse.xsl. Figure 5, “Sample Eclipse Infocenter Transformation
Configuration” shows a sample transformation configuration along with the correct parameters.
To perform this transformation using a DITA source file, use the ant/sample_eclipsehelp.xml

http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.html#pdf-transformation
http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/files/pdf/build.xml
http://www.ahmadsoft.org/fopbridge.html
http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/files/DocBook-PDF.htm
http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.html#eclipse-transformation
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Ant file.

Figure 5. Sample Eclipse Infocenter Transformation Configuration

The complete list of DocBook XSL parameters for the Eclipse Infocenter
transformation is located here .

The Flash movie that shows the Eclipse Infocenter DocBook transformation can be found here .

Current Limitations

Although we have shown that Eclipse's current XML authoring support is pretty good, there are
a two noteworthy limitations.

The first is grammar and spell-checking. While these tools are commonplace in word-
processing software, they do not yet exist for WTP's XML editor.

The second is a WYSIWYG editor for XML documentation formats such as DITA and
DocBook (or a preview window). The lack of a sophisticated editor or a way to preview what
you've written requires that you stop authoring and transform your document in order to view
the results of your changes.

While neither of these limitations has been a show-stopper in our authoring process, our hope is
that as Eclipse is recognized as an integrated documentation development environment, these
limitations will be addressed.

http://docbook.sourceforge.net/release/xsl/current/doc/html/rn22.html
http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/files/DocBook-InfoCenter.htm
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Summary
In this article, we introduced the technical documentation process and showed that technical
documentation development is possible in Eclipse. We worked through examples showing how
to use Eclipse to aid the different phases of the technical documentation process. Although there
is still a lot of room for improvement in this area we hope we've convinced you that technical
documentation in Eclipse is both possible and already viable. It's now up to you in the technical
documentation community to speak up, make it clear that Eclipse is being used for the
authoring process, and push to get the current limitations addressed.
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A. Appendix
The appendix contains a discussion about how this article was written (including the HTML
style sheet so you can write your own eclipse.org article in DocBook). The appendix also
reviews a couple of other editors out there for technical documentation in case WTP's XML
editor doesn't suit your fancy.

The Article

This article was written in DocBook using WTP's XML editor. To transform the article into the
correct format for eclipse.org, a style sheet was developed that extends the transformation
included in the DocBook XSL project. The eclipse.org article style sheet can be downloaded
here.

Eclipse.org is in the process of moving to a data driven format for
articles. You can find more information about this process by following
bug #115473. We will be contributing our stylesheets for DocBook and
DITA to this bug.

Editors

http://www.gentoo.org/
http://www.eclipse.org/emft
http://www.eclipse.org/webtools
http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/files/article.xsl
https://bugs.eclipse.org/bugs/show_bug.cgi?id=115473


10/13/09 12:34 PMAuthoring with Eclipse

Page 11 of 12http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.html

Part of the creation process involves editing the content of your XML document in an editor.
The editor you use is a preference that is usually precious to the content creator (think EMACS
versus VI). We decided to use the WTP XML editor as the editor for this article because of our
familiarity with it and because both of us like working within Eclipse. However, we realize that
there are other options for creating and editing content so we'll discuss of a couple of those
options in the following sections.

Vex

Vex [4] is an open source project that lets you edit XML files visually. Vex uses standard
Document Type Definition (DTD) files to define document types and Cascading Style Sheets
(CSS) to define document layout. In essence, Vex only requires that you have knowledge of
CSS and DTDs in order to contribute a visual editor for XML files. The Vex editor can be seen
in Figure A.1, “Vex DocBook editor screenshot” .

Figure A.1. Vex DocBook editor screenshot

OpenOffice

http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.html#vex
http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.html#vex-editor
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OpenOffice [5] is a multi-platform open source office suite that is capable of visually editing
DocBook and various other formats. OpenOffice is a popular editing choice because of its
ability to open multiple document formats, including Microsoft Word, and then export the
documents to DocBook.

OpenOffice doesn't fully support DocBook. An updated list of what portions of DocBook
OpenOffice supports can be found on the OpenOffice site here . The site also contains a getting
started guide that will get you started with DocBook in OpenOffice.

Resources
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[3] Wikipedia: Toolchain .

[4] Vex .

[5] OpenOffice .

[6] Subversion .
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