
10/13/09 12:12 PMBuilding templates with the Eclipse Plug-in Development Environment

Page 1 of 13http://www.ibm.com/developerworks/library/os-eclipse-pde/

Building templates with the Eclipse
Plug-in Development Environment
Create templates to save your users time and trouble

Chris Aniszczyk, Software Engineer, IBM, Software Group

Summary: This article introduces the creation of templates in Eclipse so you can
enhance the experience of your clients. We will develop a simple template as an
example of the flexibility PDE's templating system provides.

Date: 06 Feb 2007
Level: Intermediate
Activity: 1618 views
Comments: 0 (Add comments)

 Average rating

Background

Eclipse has been very successful since its inception, and a lot of that success is due
to the various projects that make up the Eclipse platform. One of these projects is
called the Plug-in Development Environment (PDE). If you have ever created a plug-
in in Eclipse before, you've worked with PDE. PDE is a set of tools to help create,
package, and manage plug-ins.

We will focus on the templating functionality offered in PDE. If you remember the
day you tried to create your first plug-in in Eclipse, you were making your way
through the New Plug-in Project wizard.

Figure 1. PDE plug-in wizard

http://www.ibm.com/developerworks/library/os-eclipse-pde/#author1
http://www.ibm.com/developerworks/library/os-eclipse-pde/#icomments
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://www.eclipse.org/pde

10/13/09 12:12 PMBuilding templates with the Eclipse Plug-in Development Environment

Page 2 of 13http://www.ibm.com/developerworks/library/os-eclipse-pde/

Then, on your way to creating your first plug-in, you stumbled on gold.

Figure 2. PDE plug-in wizard templates

10/13/09 12:12 PMBuilding templates with the Eclipse Plug-in Development Environment

Page 3 of 13http://www.ibm.com/developerworks/library/os-eclipse-pde/

Oh, my -- templates! PDE offers a variety of templates to start your Eclipse plug-in
creation adventure. The purpose of this article is to discuss how to create these
templates so you can reduce the learning curve your end users face when using your
extension points or code.

PDE Tidbits
PDE comprises of two main parts: UI and Build. The UI component is responsible for
all the wizards and editors -- and more! -- you see while developing plug-ins. It also
contains the templating infrastructure we're discussing in this article. The Build
component is responsible for the building and packaging of plug-ins.

Creating templates

Our goal

The way I have found I learn things best is through a nice simple example. Well,
guess what? That's exactly what we're going to do today. We're going to develop a

10/13/09 12:12 PMBuilding templates with the Eclipse Plug-in Development Environment

Page 4 of 13http://www.ibm.com/developerworks/library/os-eclipse-pde/

simple template that creates a simplistic view. It is my hope this lays the
groundwork for future template creation endeavors.

Setting up your plug-in

The first leg of our journey is to create a new plug-in project (File > New > Project
> Plug-in Project). Take advantage of templates. Make sure your project has a
dependency on org.eclipse.pde.ui. Once this is done, we can go to the Extensions tab
of the plug-in editor and begin creating our template.

Template wizards

PDE templates
All the templates in the Plug-in Project wizard are owned by PDE and the source for
these templates is freely available on Eclipse's CVS repository.

The most important extension point we'll use to create templates is
org.eclipse.pde.ui.pluginContent. This provides the ability to contribute wizards that
create additional content for PDE plug-in projects. After the plug-in manifest and key
files have been created, these wizards can be used to add more files and extensions
to the initial structure. Our implementation of this wizard is going to add content
based on a parametrized template customized based on the user choices in a wizard.
Now let's get started with this extension point.

Figure 3. Example extensions page

In Figure 3, we define a new wizard with ID (com.ibm.pde.simple.template.wizard),

http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.pde.ui.templates/
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.pde.doc.user/reference/extension-points/org_eclipse_pde_ui_pluginContent.html

10/13/09 12:12 PMBuilding templates with the Eclipse Plug-in Development Environment

Page 5 of 13http://www.ibm.com/developerworks/library/os-eclipse-pde/

name (Simple View Wizard), icon and class definition (see the code below). The
important method of the class definition is createTemplateSections(), which is
responsible for returning template sections that drive the creation of content. The
next section will discuss how to create our template file(s) and afterward, what
exactly resides in a template section.

Listing 1. SimpleViewTemplateWizard.java

package com.ibm.pde.simple.template;

import org.eclipse.pde.ui.IFieldData;
import org.eclipse.pde.ui.templates.ITemplateSection;
import org.eclipse.pde.ui.templates.NewPluginTemplateWizard;

public class SimpleViewTemplateWizard extends NewPluginTemplateWizard {

 protected IFieldData fData;

 public void init(IFieldData data) {
 super.init(data);
 fData = data;
 setWindowTitle("Simple View Wizard");

 public ITemplateSection[] createTemplateSections() {
 return new ITemplateSection[] {new SimpleViewTemplateSection()};
 }

}

Template files

Figure 4. Template project structure

Conditional logic in templates

10/13/09 12:12 PMBuilding templates with the Eclipse Plug-in Development Environment

Page 6 of 13http://www.ibm.com/developerworks/library/os-eclipse-pde/

As you see in our template, it is possible to have simple conditional logic in our
templates. The templating system supports simple and nested if statements. This
can be helpful if you desire to make your templates flexible based on user input.

The next leg of our journey is to create a template we can use to generate code. To
do this, we have to set up our project properly. If you glance at Figure 4, notice
there is a templates_3.2 folder. The name of this folder is significant as it dictates to
PDE what versions of Eclipse this template is applicable for. If you wanted your
template to run on V3.1 and greater, you would name your folder templates_3.1.
The child of this templates folder is viewtemplate and signifies the grouping of files,
known as a section, you want associated with your template. You can name this
folder anything you want.

Under the section folder, we have two folders: bin and java. These contain content
that will be copied when the template is created. The content in the java folder is
important because this is the class that represents our view. It's named
$className$.java because the templating system will automatically swap out the
variable $className$ for the user-desired name.

Inside this class file, we also have variable substitutions we want our users to
customize. The names of these variable substitutions are flexible and will be
discussed in the next section, which focuses on template sections.

Listing 2. $className$.java

package $packageName$;

import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
import org.eclipse.ui.part.ViewPart;

public class $className$ extends ViewPart {

 public void createPartControl(Composite parent) {
 Label label = new Label(parent, SWT.CENTER);

%if importantMessage
 String message = new String("$message$!!!");
%else
 String message = new String("$message$");
%endif
 label.setText(message);
 }

 public void setFocus() {}

}

10/13/09 12:12 PMBuilding templates with the Eclipse Plug-in Development Environment

Page 7 of 13http://www.ibm.com/developerworks/library/os-eclipse-pde/

Template sections

Template sections are the Java classes that contain the UI and control logic that drive
the input to your template. Template sections must implement the ITemplateSection
interface. For your convenience, PDE has an abstract class, OptionTemplateSection,
that can save you a lot of time. There are quite a few things you can do with
template sections (I'll leave it to you as an exercise to explore the included code
sample), we're going to focus on the most important ones. The first step is to make
sure we're adding wizard pages via the addPages(...) method. In this simple case, we
only have one page to add, on the first page.

Listing 3. SimpleViewTemplateSection.java

...
public void addPages(Wizard wizard) {
 WizardPage page = createPage(0, IHelpContextIds.TEMPLATE_INTRO);
 page.setTitle("Simple View Template");
 page.setDescription("Creates a simple view");
 wizard.addPage(page);
 markPagesAdded();
}
...

The next step is to provide clients with a UI so they can take advantage of the
template. This is done by declaring variables used by the template and also by
adding options via the addOption(...) method. In our class, we have a convenience
method createOptions(), which gets called in the constructor to create the options.

Listing 4. SimpleViewTemplateSection.java

...
private static final String KEY_CLASS_NAME = "className";
private static final String KEY_VIEW_NAME = "viewName";
private static final String KEY_MESSAGE_NAME = "message";
private static final String KEY_IMP_MESSAGE_NAME = "importantMessage";
...
private void createOptions() {
 addOption(KEY_CLASS_NAME, "Class Name ", "SimpleView", 0);
 addOption(KEY_VIEW_NAME, "View Name", "SimpleView", 0);
 addOption(KEY_MESSAGE_NAME, "Message", "Hello World", 0);
 addOption(KEY_IMP_MESSAGE_NAME, "Important?", false, 0);
}
...

Figure 5. Simple view options wizard page

10/13/09 12:12 PMBuilding templates with the Eclipse Plug-in Development Environment

Page 8 of 13http://www.ibm.com/developerworks/library/os-eclipse-pde/

The templating system provides several methods to help you add options; you can
see the implementation of these methods in the BaseOptionTemplateSection class.
However, if you require more flexibility than what the templating system offers, I will
point you to the registerOption(...) method. It is possible to create your own set of
options, for example, if you wanted a combo choice option, you would instantiate a
ComboChoiceOption and invoke the registerOption(...) method (see Table 1 for
descriptions of options and Figure 6 for the full type hierarchy).

Table 1. PDE template options
Option (class
name) Description

BlankField Used to create blank space on the template section wizard page

StringOption Used to collect a string from the user in the template section
wizard page

BooleanOption Used to collect a boolean choice from the user in the template
section wizard page

RadioChoiceOption Used to collect a set of radio choices from the user in the
template section wizard page

ComboChoiceOptionUsed to collect a set of combo choices from the user in the
template section wizard page

ChoiceOption Deprecated -- please use RadioChoiceOption or
ComboChoiceOption

Figure 6. Option hierarchy

10/13/09 12:12 PMBuilding templates with the Eclipse Plug-in Development Environment

Page 9 of 13http://www.ibm.com/developerworks/library/os-eclipse-pde/

The final step is to write the code that creates and populates the extension point(s)
you're interested in. In our simple example, we are only concerned with the
org.eclipse.ui.views extension point. In the PDE templating system, the
updateModel(...) method is called when the template is being created, and it is
expected of you as the template creator to create your extensions -- and other
things -- here. As a side note, it is also possible to create multiple extension points
even though the code listing below shows just the creation of one.

Listing 5. SimpleViewTemplateSection.java

...
protected void updateModel(IProgressMonitor monitor) throws CoreException {
 IPluginBase plugin = model.getPluginBase();
 IPluginModelFactory factory = model.getPluginFactory();

 // org.eclipse.core.runtime.applications
 IPluginExtension extension = \
 createExtension("org.eclipse.ui.views", true);

 IPluginElement element = factory.createElement(extension);
 element.setName("view");
 element.setAttribute("id", getStringOption(KEY_CLASS_NAME));
 element.setAttribute("name", getStringOption(KEY_VIEW_NAME));
 element.setAttribute("icon", "icons/sample.gif");

 String fullClassName =
 getStringOption(KEY_PACKAGE_NAME)\
 +"."+getStringOption(KEY_CLASS_NAME);

 element.setAttribute("class", fullClassName);
 extension.add(element);

 plugin.add(extension);
 }
...

org.eclipse.pde.ui.templates

The org.eclipse.pde.ui.templates extension point is important to note before we
conclude. This extension point provides the gateway to the custom plug-in wizard. If

http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.pde.doc.user/reference/extension-points/org_eclipse_pde_ui_templates.html

10/13/09 12:12 PMBuilding templates with the Eclipse Plug-in Development Environment

Page 10 of 13http://www.ibm.com/developerworks/library/os-eclipse-pde/

you have a specific extension point that you're templating, I recommend you extend
this as it allows clients to use your template along with others (see Figure 7). In the
case of the example used here, we can simply reuse the OptionTemplateSection
implementation (SimpleViewTemplateSection). I just want to stress that if you created a
custom extension point, it would help your users if you provided a template for
them.

Remember when you were first learning Eclipse and had to create a view? The view
template was highly valuable in understanding how things work. Extend the same
courtesy to your users.

Listing 6. plugin.xml

<extension
 point="org.eclipse.pde.ui.templates">
 <template
 class="com.ibm.pde.simple.template.SimpleViewTemplateSection"
 contributingId="org.eclipse.ui.views"
 id="com.ibm.pde.simple.template"
 name="Simple View"/>
</extension>

Figure 7. Custom plug-in wizard

10/13/09 12:12 PMBuilding templates with the Eclipse Plug-in Development Environment

Page 11 of 13http://www.ibm.com/developerworks/library/os-eclipse-pde/

Conclusion

After all this hard work, we are blessed with the ability to create a project and have
it use our simple template. Once this project is created, we can easily look at the
code and start to understand the intricacies of the template. We can also launch a
runtime workbench environment and see the result of the template.

Figure 8. Our simple view

Our goal was to introduce you to PDE's templating system, and this was
accomplished with a hands-on example. I encourage you to download the example
listed below to see how it works. I hope it is evident to you that PDE's templating
system offers a powerful way to quickly bootstrap project creation -- or maybe show
off an example implementation of your own extension point -- for your end users. If
you feel that the PDE templating system is lacking in certain areas, we gladly take
feedback in the form of Bugzilla entries. We're always looking for ways to improve
PDE.

Download

Description Name Size Download method
SimpleView Template Plug-in os-eclipse-pde.zip 12KB HTTP

Information about download methods

Resources

Learn

Learn more about Plug-in Development Environment (PDE) at Eclipse.org.

Stay current regarding Eclipse happenings by visiting Planet Eclipse.

Learn more about the Eclipse Foundation at Eclipse.org.

https://bugs.eclipse.org/bugs/enter_bug.cgi?product=PDE
http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=194037&filename=os-eclipse-pde.zip&method=http&locale=worldwide
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.eclipse.org/pde
http://planet.eclipse.org/
http://www.eclipse.org/

10/13/09 12:12 PMBuilding templates with the Eclipse Plug-in Development Environment

Page 12 of 13http://www.ibm.com/developerworks/library/os-eclipse-pde/

Learn about another templating language in Eclipse called JET by reading
"Create more -- better -- code in Eclipse with JET."

For an excellent introduction to the Eclipse platform, see "Getting started with
the Eclipse Platform."

Expand your Eclipse skills by visiting IBM developerWorks' Eclipse project
resources.

developerWorks offers interesting podcasts for software developers.

Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

Get products and technologies

Download the Eclipse Platform and get started with Eclipse now.

See the latest Eclipse technology downloads at IBM alphaWorks.

Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss

The PDE mailing list should be your first stop for discussing PDE.

The Eclipse newsgroups has many resources for people interested in using and
extending Eclipse.

Platforms newsgroups should be your first stop to learn about the intricacies of
PDE. (Selecting this will launch your default Usenet news reader application and
open eclipse.platform.)

Get involved in the developerWorks community by participating in
developerWorks blogs.

About the author

http://www.ibm.com/developerworks/opensource/library/os-ecl-jet/
http://www.ibm.com/developerworks/opensource/library/os-ecov/
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/opensource
http://www.eclipse.org/downloads/
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX44
http://dev.eclipse.org/mailman/listinfo/pde-ui-dev
http://www.eclipse.org/newsgroups/
news://news.eclipse.org/eclipse.platform
http://www.ibm.com/developerworks/blogs/

10/13/09 12:12 PMBuilding templates with the Eclipse Plug-in Development Environment

Page 13 of 13http://www.ibm.com/developerworks/library/os-eclipse-pde/

Chris Aniszczyk is a software engineer at IBM Lotus focusing on OSGi related
development. He is an open source enthusiast at heart, and he works on the Gentoo
Linux distribution and is a committer on a few Eclipse projects (PDE, ECF, EMFT).
He's always available to discuss open source and Eclipse over a frosty beverage.

Trademarks | My developerWorks terms and conditions

http://www.gentoo.org/
mailto:zx@us.ibm.com
http://www.ibm.com/developerworks/ibm/trademarks/
https://www.ibm.com/developerworks/mydeveloperworks/terms/

