
10/13/09 12:13 PMExplore Eclipse's OSGi console

Page 1 of 13http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/

Explore Eclipse's OSGi console
Use and extend the console that drives Eclipse

Chris Aniszczyk, Software Engineer, SDI Corp.

Summary: Get acquainted with the hidden gem known as the OSGi (Equinox)
console and find out how it can be added to an Eclipse developer's toolbox. And
learn how to extend the console to further add to the toolbox.

Date: 30 Jan 2007
Level: Intermediate
Activity: 4526 views
Comments: 0 (Add comments)

 Average rating

Starting with V3.0, Eclipse made a big leap by choosing Open Services Gateway
Initiative (OSGi) to replace the rickety Eclipse plug-in technology found in earlier
versions. This transition was almost transparent to users because plug-ins seemed to
install and operate as plug-ins of yore.

Figure 1. Plug-ins inside Eclipse

http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/#author1
http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/#icomments
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

10/13/09 12:13 PMExplore Eclipse's OSGi console

Page 2 of 13http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/

Because Eclipse is now built on OSGi, the plug-ins we see in Figure 1 are full-fledged
OSGi bundles. (Figure 2 shows the running bundles inside an Eclipse instance using
the OSGi console.) By using OSGi, Eclipse supports an industry-endorsed open
standard and can now take advantage of the facilities provided by OSGi, including
security, HTTP service, useradmin, and others. It seems Eclipse's gamble on OSGi is
paying off since we are seeing Eclipse use continue to grow while reported conflicts
among plug-ins are decreasing.

Figure 2. OSGi bundles inside of Eclipse

10/13/09 12:13 PMExplore Eclipse's OSGi console

Page 3 of 13http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/

Eclipse, Equinox, OSGi, oh my!
The OSGi Alliance is an independent, nonprofit corporation responsible for OSGi
technology. It is akin to the Eclipse Foundation in function. The OSGi Alliance is
responsible for producing specifications describing OSGi technology. In brief, OSGI
technology provides a service-oriented component-based platform for application
development. Various implementations are based on these specifications. One of the
most popular implementations is Equinox, which is Eclipse's implementation of the
specification. Another popular implementation of OSGi is Apache's Felix project.

Before we go any further, this article assumes you have a working knowledge of
Eclipse and OSGi. If you don't, I suggest reading Scott Delap's article "Understanding
how Eclipse plug-ins work with OSGi" before diving into the OSGi console.

Create your OSGi bundle

The first step on this adventure is to create a simple OSGi bundle in Eclipse using
the Plug-in Development Environment (PDE). To do this, we need to create a new
plug-in project using PDE (File > New > Project > Plug-in Project). In the process
of creating your new plug-in project, make sure you set the proper options. First,
select your plug-in target platform as an OSGi Framework, specifically Equinox.
Finally, for the sake of brevity, use the Hello OSGi Bundle template provided by
PDE (see Figure 3). We now have our bundle that we'll use throughout this article.

Figure 3. PDE Hello OSGi bundle wizard

http://www.ibm.com/developerworks/opensource/library/os-ecl-osgi/
http://www.eclipse.org/pde

10/13/09 12:13 PMExplore Eclipse's OSGi console

Page 4 of 13http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/

Hello OSGi console

Since we now have our Hello bundle, we can go ahead and launch the framework to
get an OSGi console. To launch the framework, we can take advantage of PDE's OSGi
Framework launch configurations. First, go to the launch configuration menu (Run >
Run ...) and create an OSGi Framework launch configuration for our Hello bundle
(see Figure 4). Also, make sure that only the required bundles needed to run the
Hello bundle are selected. An easy way to accomplish this is to press Deselect All in
the launch configuration and check off the Hello bundle, followed by pressing Add
Required Plug-ins.

Figure 4. PDE's OSGi framework launch configuration

10/13/09 12:13 PMExplore Eclipse's OSGi console

Page 5 of 13http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/

Plug-ins and bundles: What's the difference?
Wander by a basement where Eclipse developers are hacking together applications
and you'll hear the magic words plug-ins and bundles bandied about. Is there a
distinction? From a marketing vice president's perspective, the terms are
synonymous. A bundle is a plug-in and a plug-in is a bundle. We are stuck with both
terms, it seems. However, from an uber-nerd's perspective, there's some contention.
To be accurate, an Eclipse plug-in is an OSGi bundle that takes advantage of the
extension registry (i.e., have a plug-in.xml at the root of the bundle). An OSGi
bundle is, well, an OSGi bundle.

After our launch configuration is completed and ready to go, we can launch our
bundle using the Run button in the launch configuration dialog. Once this is
completed, you should see a result similar to Figure 5.

In Figure 5, we see that our Hello bundle was started (using the HelloWorld message
printed in the console indicating our bundle was started) and that we're presented
with an osgi> prompt. The OSGi prompt is similar to a DOS or a Bash prompt in that
you can enter commands that act on the OSGi instance. In this case, we issued the
ss command, which displays a quick status of everything. I encourage you to try this
command in a normal Eclipse instance to realize that everything is just an OSGi
bundle under the covers. To get an OSGi console for a normal Eclipse instance,

http://en.wikipedia.org/wiki/DOS
http://bs.wikipedia.org/wiki/Bourne_shell

10/13/09 12:13 PMExplore Eclipse's OSGi console

Page 6 of 13http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/

simply launch Eclipse with the -console parameter.

Figure 5. Our first launch

Starting and stopping bundles

In the OSGi dynamic environment, you can start and stop bundles easily. To test
this, let's use our simple Hello bundle. Simply stop the bundle with the stop
command, then start the bundle with the start command. You should see results
similar to Figure 6.

Figure 6. Starting and stopping bundles

Adding, removing and updating bundles

Another powerful aspect of an OSGi system is the ability to add, remove, and update
bundles in a running OSGi instance -- all without restarting the Java™ Virtual
Machine. Figure 7 demonstrates installing and uninstalling bundles.

10/13/09 12:13 PMExplore Eclipse's OSGi console

Page 7 of 13http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/

Figure 7. Installing and uninstalling bundles

Diagnostics

There are times when a bundle or plug-in attempts to start but has errors during
initialization. The OSGi console provides a useful command -- diag -- that helps you
debug problems associated with bundle initialization. For an example, let's examine
Figure 8, we see that in an attempt to start our Hello bundle, we get an error. To
help diagnose the error, we run the diag command against our bundle and see that
we are missing an imported package in our runtime environment.

Figure 8. Console diagnostics

10/13/09 12:13 PMExplore Eclipse's OSGi console

Page 8 of 13http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/

Summary of useful console commands

Table 1. Useful console commands
Command Description
start Starts a bundle given an ID or symbolic name
stop Stops a bundle given an ID or symbolic name
install Adds a bundle given a URL for the current instance
uninstall Removes a bundle given a URL for the current instance
update Updates a bundle given a URL for the current instance
active Lists all active bundles in the current instance
headers List the headers for a bundle given an ID or symbolic name

ss Lists a short status of all the bundles registered in the current
instance

services
<filter> Lists services given the proper filter

diag Runs diagnostics on a bundle given an ID or symbolic name

There are many other OSGi commands available. The ones listed here are the ones I
find most useful. To get a list of all the commands, just type help in the console.

Extending the console

10/13/09 12:13 PMExplore Eclipse's OSGi console

Page 9 of 13http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/

People say that the beauty of Eclipse lies in its extensibility. The console is extensible
in a similar manner. This is important because as a developer, you may provide a
service of some kind to users. By extending the console, you can enable advanced
users or administrators to debug problems regarding your service.

Instead of using familiar extension points, the console has a simple extensibility
mechanism. Let's work through several examples to illustrate the extensibility of the
console.

uname, OSGi style

Anyone who has worked with UNIX®-flavored systems is familiar with the uname
command, which prints the name, version, and other information about the running
operating system. In an OSGi context, there can be various implementations of OSGi
console (such as Knopflerfish) in the same way there are various flavors of UNIX.

The most important part of extending the OSGi console is the
CommandProviderinterface. Clients interested in extending the console must implement
this. Once it is implemented, the next step is to start method names with a "_".
These methods will represent the commands available in the console. It's that simple!
See Listing 1 for an example.

Listing 1. OSGi uname

public class Activator implements BundleActivator, CommandProvider {

 private BundleContext context;

 public void start(BundleContext context) throws Exception {
 this.context = context;
 Hashtable properties = new Hashtable();
 context.registerService\
 (CommandProvider.class.getName(), this, properties);
 }

 public String getHelp() {
 StringBuffer buffer = new StringBuffer();
 buffer.append("\tuname - returns framework information\n");
 return buffer.toString();
 }

 public void stop(BundleContext context) throws Exception {}

 public void _uname(CommandInterpreter ci) throws Exception {
 String vendor = context.getProperty(Constants.FRAMEWORK_VENDOR);
 String version = context.getProperty(Constants.FRAMEWORK_VERSION);
 String osName = context.getProperty(Constants.FRAMEWORK_OS_NAME);
 String osVersion = context.getProperty(Constants.FRAMEWORK_OS_VERSION);
 System.out.println("\n " + vendor + " "
 + version + " (" + osName + " "

http://en.wikipedia.org/wiki/Uname
http://www.knopflerfish.org/

10/13/09 12:13 PMExplore Eclipse's OSGi console

Page 10 of 13http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/

 + osVersion + ")");
 }
}

Bundles and existentialism

Bundles may never question their existence, but here's a simple example that prints
whether a bundle is a vanilla bundle or an Eclipse plug-in. (Remember, both are still
bundles!) Listing 2 builds on the previous example by adding a new method and
modifying the getHelp() method.

Listing 2. Modify getHelp()

...
public String getHelp() {
 StringBuffer buffer = new StringBuffer();
 buffer.append("\twhatami - \
 returns whether the bundle is a plug-in or not\n");
 buffer.append("\tuname - returns framework information\n");
 return buffer.toString();
 }

public void _whatami(CommandInterpreter ci) throws Exception {
 try {
 long id = Long.parseLong(ci.nextArgument());
 Bundle bundle = context.getBundle(id);
 URL url = bundle.getEntry("plugin.xml");
 if(url != null) {
 System.out.println("\n I'm \
 (" + bundle.getSymbolicName() + ") a plug-in");
 } else {
 System.out.println("\n I'm \
 (" + bundle.getSymbolicName() + ") not a plug-in");
 }
 } catch (NumberFormatException nfe) {
 System.out.println("\n Error processing command");
 }
 }
...

The results of our labor can be seen in Figure 9.

Figure 9. Results from extending the console

10/13/09 12:13 PMExplore Eclipse's OSGi console

Page 11 of 13http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/

Conclusion

This article demonstrates how to use the OSGi console and how to extend the
console. Along the way, we've looked at the console and several examples on how to
extend it. You now have greater familiarity with the console and have an idea how to
use it in your day-to-day Eclipse development. Maybe using the console will even
bring back memories of playing Doom and Quake.

Figure 10. The Quake console

Download

Description Name Size Download method
Source code os-ecl-osgiconsole.hello.zip 49KB HTTP

Information about download methods

http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=192509&filename=os-ecl-osgiconsole.hello.zip&method=http&locale=worldwide
http://www.ibm.com/developerworks/library/whichmethod.html

10/13/09 12:13 PMExplore Eclipse's OSGi console

Page 12 of 13http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/

Resources

Learn

Visit the OSGi Alliance to learn more about the Open Services Gateway Initiative
(OSGi).

Learn about Eclipse's OSGi implementation of Equinox.

The Eclipse.org PDE is a great place to learn about the plug-in development
environment provided by Eclipse.

Knopflerfish is another OSGi implementation.

Read "Understanding how Eclipse plug-ins work with OSGi" by Scott Delap.

For an introduction to Eclipse and OSGi, read "Leave Eclipse plug-in headaches
behind with OSGi."

Check out Eclipsecon 2007, the premier Eclipse conference.

For an excellent introduction to the Eclipse platform, see "Getting started with
the Eclipse Platform."

Visit IBM developerWorks' Eclipse project resources to learn more about Eclipse.

Stay current with developerWorks technical events and webcasts.

Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

To listen to interesting interviews and discussions for software developers, be
sure to check out developerWorks podcasts.

Get products and technologies

Download the Eclipse Platform and get started with Eclipse now.

See the latest Eclipse technology downloads at IBM alphaWorks.

http://www.osgi.org/
http://www.eclipse.org/equinox
http://www.eclipse.org/pde
http://www.knopflerfish.org/
http://www.ibm.com/developerworks/opensource/library/os-ecl-osgi/
http://www.ibm.com/developerworks/opensource/library/os-ecl-dynext/
http://www.eclipsecon.org/
http://www.ibm.com/developerworks/opensource/library/os-ecov/
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource
http://www.ibm.com/developerworks/podcast/
http://www.eclipse.org/downloads/
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/

10/13/09 12:13 PMExplore Eclipse's OSGi console

Page 13 of 13http://www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/

Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss

The Eclipse Platform newsgroups should be your first stop to discuss questions
regarding Eclipse. (Selecting this link will launch your default Usenet news
reader application and open eclipse.platform.)

The Equinox newsgroups contain a plethora of information about Eclipse's OSGi
implementation. (Selecting this link will launch your default Usenet news reader
application and open eclipse.technology.equinox.)

The Eclipse newsgroups has many resources for people interested in using and
extending Eclipse.

Get involved in the developerWorks community by participating in
developerWorks blogs.

About the author

Chris Aniszczyk is a software engineer at IBM Lotus focusing on OSGi related
development. He is an open source enthusiast at heart, and he works on the Gentoo
Linux distribution and is a committer on a few Eclipse projects (PDE, ECF, EMFT).
He's always available to discuss open source and Eclipse over a frosty beverage.

Trademarks | My developerWorks terms and conditions

http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX44
news://news.eclipse.org/eclipse.platform
news://news.eclipse.org/eclipse.technology.equinox
http://www.eclipse.org/newsgroups/
http://www.ibm.com/developerworks/blogs/
http://www.gentoo.org/
mailto:zx@us.ibm.com
http://www.ibm.com/developerworks/ibm/trademarks/
https://www.ibm.com/developerworks/mydeveloperworks/terms/

