
10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 1 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

Explore Eclipse's embedded Rich
Client Platform
Your mobile device wants Eclipse

Chris Aniszczyk, Software Engineer, IBM, Software Group
Uriel Liu (liukl@tw.ibm.com), Software Engineer, IBM, Software Group

Summary: Get an introduction to the embedded Rich Client Platform (eRCP). Learn
about the various components that make up eRCP and get some examples on how to
use them in your applications.

Date: 21 Mar 2006
Level: Introductory
Activity: 2116 views
Comments: 0 (Add comments)

 Average rating

Background

The embedded Rich Client Platform (eRCP) came about as a way to bring the
advancements of the Eclipse Rich Client Platform (RCP) and apply it to the embedded
space.

The eRCP is made up of the following components:

Standard Widget Toolkit (eSWT) -- Core, Expanded and Mobile extensions
eJFace
eWorkbench
eUpdate

We will discuss each of these components and use code examples where appropriate.

eSWT

The embedded Standard Widget Toolkit (eSWT) is a subset of the well-known Java™
graphics tool kit, the Standard Widget Toolkit (SWT). It provides a set of controls,
panels, and other widgets commonly used as building blocks of user interfaces (UIs).
In addition to what was originally included in SWT, eSWT introduced a new
component: mobile extensions (a jointly designed specification among IBM, Nokia,
and Motorola), primarily targeted for mobile devices like PDAs and smart phones.

The design of eSWT is different from its cousin SWT in terms of platform-
independence. SWT uses the platform-independent approach by trying to keep the
native code as simple as possible to increase portability among operating systems.
The problem is that portability and performance are competing issues, so eSWT

http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/#author1
http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/#author2
mailto:liukl@tw.ibm.com?subject=Explore%20Eclipse's%20embedded%20Rich%20Client%20Platform
http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/#icomments
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 2 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

decided on another approach: the Universal Graphics Layer (UGL), which still
preserves the Java Native Interface (JNI) on the native tool kit implementation. But,
instead of acting as a 1:1 JNI wrapper, UGL tries to keep the native implementation
as close as possible, only requiring the information to callback through JNI. eSWT's
approach sacrifices portability since the native tool kit completely depends on what
graphics system is used, but this approach increases performance dramatically (a
major concern in mobile devices).

There are three components included in eSWT (see Figure 1):

Core
Expanded
Mobile Extensions

Figure 1. eSWT UI tool kit packages

The core and expanded components are subsets of eSWT. The newly invented mobile
extensions component is targeted at mobile devices. This kind of componentization
allows for flexibility to configure what components should be included on the device,
based on device capability and purpose. The core component is mandatory and
contains the minimum functions required to run a basic application. The expanded
and mobile extensions components are optional.

In the following sections, we will walk through each component, along with sample
applications.

eSWT Core

eSWT Core contains the fundamental UI elements, including low-level graphics,
events, and basic widget infrastructure. Table 1 shows the classes in eSWT Core.

Table 1. eSWT Core org.eclipse classes
swt.widgets swt.graphics swt.events swt.layout swt.swt
Button Color ControlEvent FormLayout SWT
Canvas Device DisposeEvent FormData SWTException

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 3 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

Combo Font FocusEvent FormAttachment SWTError
Composite FontData KeyEvent - -
Control FontMetrics MenuEvent - -
Decorations GC ModifyEvent - -
Dialog Image MouseEvent - -
Display ImageData PaintEvent - -
Event PaletteData SelectionEvent - -
FileDialog Point ShellEvent - -
Item Rectangle TraverseEvent - -
Label Resource TypedEvent - -
Layout RGB VerifyEvent - -
List - - - -
Menu/MenuItem - - - -
MessageBox - - - -
ProgressBar - - - -
Scrollable - - - -
Scrollbar - - - -
Shell - - - -
Slider - - - -
Synchronizer - - - -
Text - - - -
TypedListener - - - -

eSWT Core example

Let's start with a complete eSWT program that creates a window that displays
"HelloWorld from eSWT" on the application title bar. Then we'll add a few core
controls (text, button, list). For layout, we'll use FormLayout and FormData. We'll also
add SelectionListener on a button to bring up a message box. The complete code can
be seen in Listing 1.

Listing 1: HelloWorld, eSWT style

01 public class HelloWorldeSWT {
02
03 public static void main(String[] args) {
04 Display display = new Display();
05 final Shell shell = new Shell(display);
06
07 Text text = new Text(shell,SWT.SINGLE);
08 text.setText("This is a text");
09 Button buttonleft = new Button(shell, SWT.PUSH);
10 buttonleft.setText("Left Push!");
11 Button buttonright = new Button(shell, SWT.PUSH);
12 buttonright.setText("Right Push!");
13 buttonright.addSelectionListener(new SelectionListener(){
14 public void widgetSelected(SelectionEvent e) {
15 MessageBox messageBox = new MessageBox(shell,
16 SWT.ICON_INFORMATION| SWT.YES | SWT.NO);
17 messageBox.setText("MessageBox");
18 messageBox.setMessage("Can you see me?");
19 messageBox.open();
20 }
21 public void widgetDefaultSelected(SelectionEvent e) {

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 4 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

22 }});
23 List list = new List(shell,SWT.MULTI|SWT.BORDER);
24 for (int i=0; i<5; i++) {
25 list.add("item "+i);
26 }
27
28 shell.setText("HelloWorld from eSWT");
29 FormLayout layout = new FormLayout();
30 layout.spacing = 5;
31 layout.marginHeight = layout.marginWidth = 9;
32 shell.setLayout(layout);
33
34 FormData textData = new FormData();
35 textData.top = new FormAttachment(0);
36 textData.left = new FormAttachment(0);
37 textData.right = new FormAttachment(90);
38 text.setLayoutData(textData);
39
40 FormData buttonleftData = new FormData();
41 buttonleftData.top = new FormAttachment(text);
42 buttonleftData.left = new FormAttachment(0);
43 buttonleftData.right = new FormAttachment(40);
44 buttonleft.setLayoutData(buttonleftData);
45
46 FormData buttonrightData = new FormData();
47 buttonrightData.top = new FormAttachment(text);
48 buttonrightData.left = new FormAttachment(buttonleft);
49 buttonright.setLayoutData(buttonrightData);
50 FormData listData = new FormData();
51
52 listData.top = new FormAttachment(buttonleft);
53 list.setLayoutData(listData);
54
55 shell.setSize(240,320);
56 shell.open();
57
58 while (!shell.isDisposed()) {
59 if (!display.readAndDispatch())
60 display.sleep();
61 }
62 display.dispose();
63 }

Figure 2 shows the application running on a Japanese edition PocketPC device. Once
the user taps the Right Push! button, a message box will appear (as shown in
Figure 3). eSWT utilizes the underlying native graphics library support to provide a
consistent UI (a native application look and feel, rather than inventing a new look).

Figure 2. HelloWorld, eSWT style

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 5 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

Figure 3. MessageBox with a native look and feel

Example evaluation

It's worthwhile to give a line-by-line explanation of what we accomplished in Listing
1.

Lines 04-05:
We create a display and a shell. The shell sets the display as its parent to make
it become a top-level window. Top-level windows are automatically maximized
on the PocketPC platform for consistency. We created the shell with a final
modifier because it's used in the SelectionListener later.

Lines 07-08:
Creates text and calls setText() to set the text string.

Lines 09-22:
We create two buttons. In the right button, we add a SelectionListener to bring

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 6 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

up a simple message box.

Lines 23-26:
We create a list containing five items.

Line 28:
We set the text on the window's title bar.

Lines 29-53:
We use FormLayout, FormData, and FormAttachment to assist with the layout process.

Lines 55-56:
We set the shell size and open it. setSize() doesn't take effect for top-level
window in this case (due to the device).

Lines 58-61:
Inside the while() loop, we establish an explicit loop to keep reading and
dispatching user events from the operating system. If no more events are
available, display.sleep() gets called and goes to sleep waiting for the next
event.

Line 62:
The display.dispose() call at the last line of code explicitly disposes the display
and releases any associated resources from the eSWT application.

eSWT Expanded

eSWT Expanded is an optional component that contains more sophisticated UI
elements and layouts. This functionality is commonly found on high-end mobile
devices and PDAs. Table 2 shows a detailed list of classes in eSWT Expanded.

Table 2. eSWT Expanded classes
org.eclipse.swt.widgetsorg.eclipse.swt.browserorg.eclipse.swt.dndorg.eclipse.swt.graphics
ColorDialog Browser ByteArrayTransfer ImageLoader
DirectoryDialog LocationEvent Clipboard -
FontDialog ProgressEvent TextTransfer -
Table StatusTextEvent Transfer -
Tree TitleEvent TransferData -

eSWT Expanded example

The Browser widget is a fancy control in eSWT Expanded. We will create a fully
functional Web browser using the Browser control (see Listing 2). We'll allow users to
set the URL, move forward, backward, or reload the page in this example.

Listing 2. Simple HTML browser

public class BrowserTest {

 static Button prev, reload, next, go;
 static Text url;
 static Browser browser;

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 7 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

 public static void main(String[] args) {
 final Display display = new Display();
 Shell shell = new Shell(display);

 //set window title and size
 shell.setText("SimpleBrowser");
 shell.setSize(240,320);

 //previous button
 prev = new Button(shell, SWT.PUSH);
 prev.setText("<<");
 prev.addSelectionListener(new SelectionListener(){
 public void widgetSelected(SelectionEvent e) {
 browser.back();
 }
 public void widgetDefaultSelected(SelectionEvent e) {
 }});

 //reload button
 reload = new Button(shell, SWT.PUSH);
 reload.setText("R");
 reload.addSelectionListener(new SelectionListener(){
 public void widgetSelected(SelectionEvent e) {
 browser.refresh();
 }
 public void widgetDefaultSelected(SelectionEvent e) {
 }});

 //next button
 next = new Button(shell, SWT.PUSH);
 next.setText(">>");;
 next.addSelectionListener(new SelectionListener(){
 public void widgetSelected(SelectionEvent e) {
 browser.forward();
 }
 public void widgetDefaultSelected(SelectionEvent e) {
 }});

 // url text
 url = new Text(shell, SWT.SINGLE|SWT.BORDER);
 url.setText("http://");

 // go button
 go = new Button(shell, SWT.PUSH);
 go.setText("GO");
 go.addSelectionListener(new SelectionListener(){
 public void widgetSelected(SelectionEvent e) {
 // TODO Auto-generated method stub
 browser.setUrl(url.getText());
 }
 public void widgetDefaultSelected(SelectionEvent e) {
 }});

 // browser
 browser = new Browser(shell, SWT.NONE);
 browser.setUrl("http://www.google.com");

 FormLayout formLayout = new FormLayout();
 shell.setLayout(formLayout);
 formLayout.spacing = 1;
 formLayout.marginHeight = formLayout.marginWidth = 2;

 FormData prevData = new FormData();
 prevData.left = new FormAttachment(0);

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 8 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

 prevData.top = new FormAttachment(0);
 prevData.width = 16;
 prev.setLayoutData(prevData);

 FormData reloadData = new FormData();
 reloadData.left = new FormAttachment(prev);
 reloadData.top = new FormAttachment(0);
 reloadData.width = 16;
 reload.setLayoutData(reloadData);

 FormData nextData = new FormData();
 nextData.left = new FormAttachment(reload);
 nextData.top = new FormAttachment(0);
 nextData.width = 16;
 next.setLayoutData(nextData);

 FormData urlData = new FormData();
 urlData.left = new FormAttachment(next);
 urlData.top = new FormAttachment(0);
 urlData.right = new FormAttachment(89);
 urlData.bottom = new FormAttachment(browser);
 url.setLayoutData(urlData);

 FormData goData = new FormData();
 goData.left = new FormAttachment(url);
 goData.top = new FormAttachment(0);
 goData.width = 24;
 go.setLayoutData(goData);

 FormData browserData = new FormData();
 browserData.top = new FormAttachment(prev);
 browserData.left = new FormAttachment(0);
 browserData.right = new FormAttachment(100);
 browserData.bottom = new FormAttachment(100);
 browser.setLayoutData(browserData);

 shell.open();
 while(!shell.isDisposed()) {
 if(!display.readAndDispatch())
 display.sleep();
 }
 display.dispose();
 }
}

Figure 4 shows the simple browser running on PocketPC.

Figure 4. A simple browser

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 9 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

eSWT Mobile Extensions

eSWT Mobile Extensions is an optional component that provides UI elements
commonly found on myriad mobile devices. Table 3 shows classes in the eSWT
Mobile Extensions component.

Table 3. eSWT Mobile Extension classes
org.eclipse.ercp.swt.mobile
CaptionedControl
Command
ConstrainedText
DateEditor
HyperLink
Input
ListBox/ListBoxItem
MobileDevice/MovileDeviceEvent/MobileDeviceListener
MobileShell
MultiPageDialog
QueryDialog
Screen/ScreenEvent/ScreenListener
SortedList
TaskTip
TextExtension
TimedMessageBox

eSWT Mobile Extensions example

In this example, we'll use MobileShell instead of Shell to provide full-screen
functionality. MobileShell contains a SortedList on the top and a ListView on the
bottom. Commands are associated with the MobileShell for the user to change full-
screen mode and with ListView to change layout density. The source is in Listing 3.

Listing 3. MobileExtension example

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 10 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

public class MobileExtensionSample implements IPlatformRunnable {
 public static void main(String[] args) {
 Display display = new Display();
 final MobileShell shell = new MobileShell(display);
 final Button resetButton = new Button(shell, SWT.PUSH|SWT.BORDER);

 Command shellCommand = new Command(shell, Command.SELECT,0);
 shellCommand.setText("FullScreen");
 shellCommand.addSelectionListener(new SelectionListener(){
 public void widgetSelected(SelectionEvent e) {
 shell.setFullScreenMode(true);
 resetButton.setVisible(true);
 }
 public void widgetDefaultSelected(SelectionEvent e) {
 }});

 resetButton.setText("Normal Screen");
 resetButton.addSelectionListener(new SelectionListener(){
 public void widgetSelected(SelectionEvent e) {
 shell.setFullScreenMode(false);
 resetButton.setVisible(false);
 }
 public void widgetDefaultSelected(SelectionEvent e) {
 }});

 // Create SortedList and add items
 SortedList sortedList = new SortedList(
 shell,
 SWT.MULTI|SWT.V_SCROLL|SWT.BORDER,
 SortedList.FILTER);
 sortedList.add("banana");
 sortedList.add("123");
 sortedList.add("12");
 sortedList.add("happyhour");
 sortedList.add("toobad");
 sortedList.add("youknowwhat");
 sortedList.add("yes");
 sortedList.add("886222333");

 // Create ListView and add items with image set
 Image[] image = new Image[4];
 image[0] = new Image(
 Display.getDefault(),
 MobileExtensionSample.class.getResource\
 AsStream("/icons/sample.gif"));
 image[1] = new Image(
 Display.getDefault(),
 MobileExtensionSample.class.getResource\
 AsStream("/icons/sample.gif"));
 image[2] = new Image(
 Display.getDefault(),
 MobileExtensionSample.class.getResource\
 AsStream("/icons/sample.gif"));
 image[3] = new Image(
 Display.getDefault(),
 MobileExtensionSample.class.getResource\
 AsStream("/icons/sample.gif"));

 final ListView lv = new ListView(shell, SWT.MULTI|SWT.BORDER);
 for (int i=0; i<20; i++) {
 lv.add("item"+i, image[i % 4]);
 }

 //Create a Command for setting low density

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 11 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

 Command lowCommand = new Command(lv, Command.SELECT, 0);
 lowCommand.setText("LOW");
 lowCommand.addSelectionListener(new SelectionListener(){
 public void widgetSelected(SelectionEvent e) {
 lv.setLayoutDensity(ListView.LOW);
 }
 public void widgetDefaultSelected(SelectionEvent e) {
 }});

 //Create a Command for setting high density
 Command midCommand = new Command(lv, Command.SELECT, 0);
 midCommand.setText("MEDIUM");
 midCommand.addSelectionListener(new SelectionListener(){
 public void widgetSelected(SelectionEvent e) {
 lv.setLayoutDensity(ListView.MEDIUM);
 }
 public void widgetDefaultSelected(SelectionEvent e) {
 }});

 FormLayout layout = new FormLayout();
 layout.spacing = 2;
 layout.marginHeight = layout.marginHeight = 2;
 shell.setLayout(layout);
 FormData sortedListData = new FormData();
 sortedListData.top = new FormAttachment(0);
 sortedListData.left = new FormAttachment(0);
 sortedListData.right = new FormAttachment(100);
 sortedListData.height = 120;
 sortedList.setLayoutData(sortedListData);
 FormData lvData = new FormData();
 lvData.top = new FormAttachment(sortedList);
 lvData.right = new FormAttachment(100);
 lvData.left = new FormAttachment(0);
 lvData.height = 130;
 lv.setLayoutData(lvData);
 FormData resetData = new FormData();
 resetData.top = new FormAttachment(lv);
 resetData.left = new FormAttachment(0);
 resetButton.setLayoutData(resetData);
 resetButton.setVisible(false);

 shell.setSize(240,320);
 shell.setText("Mobile Example");
 shell.open();
 while (!shell.isDisposed()) {
 if (!display.readAndDispatch())
 display.sleep();
 }
 display.dispose();
 }
}

Figure 5 shows the result running on the PocketPC platform, and the full-screen
mode is shown in Figure 6.

Figure 5. MobileShell with SortedList and ListView

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 12 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

Figure 6. Full-screen MobileShell

eJFace

eJFace is a platform-independent UI tool kit that depends on eSWT. eJFace provides
a set of components and help utilities that simplify the development of eSWT-based
applications (by wrapping the eSWT widgets), just like JFace does for SWT. In fact,
eJFace is a strict subset of JFace, so it shares many similarities with its cousin.
eJFace provides support for resource management, viewers, actions, and preference
pages. There are tutorials in Resources covering JFace that can aid in your eJFace
endeavors.

Viewer types available in eJFace:

CheckBoxTableViewer
CheckBoxTreeViewer
ComboViewer

http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/#resources

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 13 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

ListViewer
TableViewer
TreeViewer

eWorkbench

eWorkbench allows eRCP applications to run simultaneously inside a single
workbench window, similar to how it is in RCP. eWorkbench clients provide views for
specific display scenarios, and eWorkbench automatically decides which view to use
based on the mobile device in use. In eWorkbench, there is no concept of
perspectives -- it can be considered that there is only one perspective applications
share -- due to the applicability of the concept to embedded devices.

eWorkbench application development

There are a couple steps (familiar to RCP developers) for creating an eWorkbench
application. The process is similar to creating an Eclipse RCP application using the
concept of contributions.

Step 1: Define your views

eWorkbench lets you define three types of views that extend
org.eclipse.ui.part.ViewPart. The normal view is required; the other two views are
optional.

Normal: The default view
Large: The view used when the display is large
Status: The view used when the display is small

Now we create a sample view to use.

Listing 4. Sample view

public class DefaultView extends ViewPart {

 public void createPartControl(Composite parent) {
 //create a composite with fill layout to host a label
 Composite composite = new Composite(parent, SWT.NONE);
 composite.setLayout(new FillLayout());

 // create a label
 Label label = new Label(composite,SWT.CENTER);
 label.setText("Hello eWorkbench!"); }

 public void setFocus() {}
}

Let Eclipse know we have views available by using the extension point mechanism
(see Listing 5).

Listing 5. plugin.xml

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 14 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

<extension point="org.eclipse.ui.views">
 <view allowMultiple="false"
 category="org.eclipse.ercp.eworkbench.viewCategory"
 class="com.ibm.ercp.application.views.DefaultView"
 icon="icons/sample.gif"
 id="com.ibm.ercp.application.defaultView"
 name="Sample DefaultView"/>
</extension>

Step 2: Define your eWorkbench contribution

To be considered an eWorkbench application, you have to extend the
org.eclipse.ercp.eworkbench.applications extension point and provide some
information (see Listing 6 for an example):

id: The unique identifier that will represent your eWorkbench application
name: The name of your application (displayed in the workbench)
views: The views that your application will support (normal, large, support)

Listing 6. plugin.xml

<extension point="org.eclipse.ercp.eworkbench.applications">
 <application id="com.ibm.ercp.application" name=\
 "IBM Sample Application" singleton="true">
 <views normal="com.ibm.ercp.application.views.normal" />
 </application>
</extension>

Figure 7 shows a side-by-side screenshot of the eWorkbench application list, followed
by the launch of our sample application.

Figure 7. Hello, eWorkbench

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 15 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

eUpdate

An advantage RCP offers is the ability to update plug-ins from a centralized server
using the update manager interface. There are also features associated with the
update manager, such as scheduled updates. Also, by using the Open Services
Gateway Initiative (OSGi) and plug-ins, features can be installed dynamically. eRCP's
answer to these advantages is eUpdate, which at the time of this writing is being
developed heavily.

eUpdate provides the logic and UI for plug-ins wishing to contain update
management capabilities. You can write your own update functionality with the help
of these plug-ins or by using an eUpdate workbench application that provides a
complete GUI for configuring update-related information.

Conclusion

This article introduced the embedded Rich Client Platform (eRCP) and its various
components, providing example code that includes the sample eWorkbench
application and other code listings as self-contained examples.

Download

Description Name Size Download method
Sample codeos-ecl-rcp-com.ibm.ercp.application_1.0.0.jar 25KBHTTP

Information about download methods

Resources

Learn

Learn more about the embedded Rich Client Platform.

Learn more about using JFace through "How to use the JFace Tree Viewer" at
Eclipse.org.

Find out more about using eSWT with a few SWT Snippets.

Check out the Eclipse Foundation and its many projects.

Learn more about the Open Services Gateway Initiative at OSGi.org.

Visit developerWorks' Eclipse project resources to learn more about Eclipse.

Stay current with developerWorks technical events and webcasts.

Visit the developerWorks Open source zone for extensive how-to information,

http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=106104&filename=os-ecl-rcp-com.ibm.ercp.application_1.0.0.jar&method=http&locale=worldwide
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.eclipse.org/ercp
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/
http://www.eclipse.org/swt/snippets/
http://eclipse.org/
http://www.osgi.org/
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/opensource

10/13/09 12:23 PMExplore Eclipse's embedded Rich Client Platform

Page 16 of 16http://www.ibm.com/developerworks/opensource/library/os-ecl-rcp/

tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

Get products and technologies

See the latest Eclipse technology downloads at IBM alphaWorks.

Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss

Get involved with eRCP development by checking out the eRCP mailing lists.

Seek help at the eRCP newsgroups first.

The Eclipse newsgroups has lots of resources for people interested in using and
extending Eclipse.

Get involved in the developerWorks community by participating in
developerWorks blogs.

About the authors

Chris Aniszczyk is a software engineer at IBM Lotus focusing on OSGi related
development. He is an open source enthusiast at heart, and he works on the Gentoo
Linux distribution and is a committer on a few Eclipse projects (PDE, ECF, EMFT).
He's always available to discuss open source and Eclipse over a frosty beverage.

Uriel Liu is a software developer at the IBM China Software Development Lab and
works in WED client technology. He is also a committer on the eRCP project.

Trademarks | My developerWorks terms and conditions

http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX44
https://dev.eclipse.org/mailman/listinfo/ercp-dev
news://news.eclipse.org/eclipse.technology.ercp
http://www.eclipse.org/newsgroups/
http://www.ibm.com/developerworks/blogs/
http://www.gentoo.org/
mailto:zx@us.ibm.com
http://www.eclipse.org/ercp
http://www.ibm.com/developerworks/ibm/trademarks/
https://www.ibm.com/developerworks/mydeveloperworks/terms/

