
ibm.com/redbooks Redpaper

Front cover

The Eclipse embedded
Rich Client Platform
A Graphical User Interface for Small Devices

Juan R. Rodriguez
Chris Aniszczyk

Uriel Liu
Guillermo Villavicencio

Understand eRCP applications for
embedded mobile devices

Learn about the embedded
Standard Widget Toolkit (eSWT)

Develop eJFace applications
using the eWorkbench
application model

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

The Eclipse embedded Rich Client Platform: A
Graphical User Interface for Small Devices

June 2006

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (June 2006)

This edition applies to Version 3.1.2 of Eclipse SDK and Version 1.4.2 of Java Runtime Environment (JRE)

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this Redpaper . ix
Become a published author .x
Comments welcome. .x

Chapter 1. Introduction to eRCP . 1
1.1 Rich Client Platform . 2
1.2 The embedded Rich Client Platform . 2
1.3 Terminology . 3

1.3.1 Eclipse . 3
1.3.2 Java 2 Micro Edition . 3
1.3.3 Open Service Gateway initiative . 3
1.3.4 Service Management Framework . 4

1.4 Technology overview . 5
1.4.1 The eRCP core . 5
1.4.2 The embedded Standard Widget Toolkit. 5
1.4.3 The embedded JFace . 6
1.4.4 The embedded Workbench. 7
1.4.5 eUpdate . 7

Chapter 2. eSWT fundamentals . 9
2.1 eSWT packaging. 10

2.1.1 eSWT core . 10
2.1.2 eSWT expanded . 14
2.1.3 eSWT mobile extensions . 15

2.2 Creating a complete eSWT program. 16
2.3 The Display class . 17

2.3.1 Events and listeners . 18
2.3.2 Event filters . 18
2.3.3 Shells and focus control . 19
2.3.4 System information . 19

2.4 Composite and shell . 20
2.4.1 Composite . 20
2.4.2 Shell . 21

2.5 Events and listeners . 22
2.5.1 Untyped listeners . 23
2.5.2 Typed listeners . 24

2.6 Mouse . 26
2.7 Keyboard. 27

2.7.1 Keyboard events . 27
2.7.2 Focus events. 27
2.7.3 Key events . 29
2.7.4 Accelerators . 29

Chapter 3. eSWT core . 31
3.1 Controls. 32
© Copyright IBM Corp. 2006. All rights reserved. iii

3.1.1 Label . 32
3.1.2 Button . 34
3.1.3 Text . 36
3.1.4 List . 37
3.1.5 Combo box . 38
3.1.6 Dialog window. 39
3.1.7 MessageBox . 41
3.1.8 FileDialog . 42
3.1.9 Menu . 44
3.1.10 ScrollBar and Slider widgets . 45
3.1.11 ProgressBar . 47

3.2 Layouts . 48
3.2.1 FormLayout . 48

Chapter 4. eSWT mobile extensions . 51
4.1 Controls. 52

4.1.1 CaptionedControl . 52
4.1.2 ConstrainedText . 53
4.1.3 HyperLink . 54
4.1.4 DateEditor . 56
4.1.5 ListBox . 58
4.1.6 ListView. 64
4.1.7 MobileShell . 68
4.1.8 SortedList . 71
4.1.9 TextExtension . 73

4.2 Widgets . 75
4.2.1 TaskTip . 75

4.3 Dialogs . 77
4.3.1 MultiPageDialog . 77
4.3.2 TimedMessageBox . 80

4.4 Items . 81
4.4.1 Command . 81

4.5 Device-related . 85
4.5.1 MobileDevice . 85
4.5.2 Screen. 87
4.5.3 Input . 88

Chapter 5. eSWT expanded . 89
5.1 Layouts . 90

5.1.1 FillLayout. 90
5.1.2 RowLayout . 91
5.1.3 GridLayout . 97
5.1.4 ColorDialog . 101
5.1.5 DirectoryDialog . 102
5.1.6 FontDialog. 102
5.1.7 Table . 103
5.1.8 Tree. 106
5.1.9 Browser . 109

Chapter 6. eJFace applications . 115
6.1 eJFace fundamentals . 116
6.2 Viewers . 117

6.2.1 Viewer framework . 117
6.2.2 Viewers . 117
iv The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

6.2.3 Content viewers . 118
6.2.4 Structured viewers . 119
6.2.5 Viewer types . 120

6.3 Operations. 121
6.4 Resource management . 121
6.5 Preferences. 122

6.5.1 Preference storage . 122
6.5.2 Preference dialogs . 122

Chapter 7. eRCP eWorkbench . 125
7.1 Introduction . 126
7.2 Developing for the eWorkbench . 126

7.2.1 Creating your plug-in. 126
7.2.2 Defining you views . 127
7.2.3 Defining your application. 128

Chapter 8. eRCP sample scenario . 129
8.1 Preparing the environment . 130

8.1.1 The eRCP development environment . 130
8.1.2 Installing the Eclipse SDK. 131
8.1.3 Installing Workplace Client Technology Micro Edition for Windows 132
8.1.4 Installing the eRCP runtimes. 133
8.1.5 Database support for small devices . 133
8.1.6 Installing Workplace Client Technology, Micro Edition database components . . 134
8.1.7 Configuring the environment to use the database components 136

8.2 Configuring Eclipse and creating the eRCP project . 137
8.2.1 Configuring eRCP as the Eclipse target platform . 138
8.2.2 Adding Foundation Profile as an Eclipse JRE. 139
8.2.3 Creating the ITSO Mobile Store project . 141

8.3 Designing the ITSO Mobile Store application . 143
8.3.1 ITSO Mobile Store architecture. 143
8.3.2 Enterprise Resources layer. 144
8.3.3 Domain layer . 145
8.3.4 Data Access Objects layer . 146
8.3.5 Services layer . 147
8.3.6 Presentation layer . 149
8.3.7 Importing the ITSO Mobile Store code . 149

8.4 Developing the presentation layer using eRCP . 150
8.4.1 The command package . 150
8.4.2 The util package . 155
8.4.3 The resources package . 165
8.4.4 The preferences package . 165
8.4.5 The views package . 169
8.4.6 The dialogs package. 200

8.5 Managing exceptions . 210
8.5.1 The ExceptionManager class . 210

8.6 The Mobile Store plug-in . 212
8.6.1 The MobileStorePlugin class. 212
8.6.2 The eWorkbench application extension . 214

8.7 Running the ITSO Mobile Store application . 215
8.8 Deploying and running the application in the mobile device . 219

8.8.1 Deploying the JRE for WM2003 . 219
8.8.2 Deploying the eRCP runtime for WM2003 . 220
 Contents v

8.8.3 Copying the database libraries to the device . 220
8.8.4 Deploying the application . 221
8.8.5 Running the application . 223

Appendix A. Additional material . 225
Locating the Web material . 225
Using the Web material . 226

System requirements for downloading the Web material . 226
How to use the Web material . 226

Related publications . 227
IBM Redbooks . 227
Other publications . 227
Online resources . 227
How to get IBM Redbooks . 227
Help from IBM . 228
vi The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2006. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ™
DB2®
DPI®
Everyplace®

Extreme Blue™
IBM®
Redbooks™
WebSphere®

Workplace™
Workplace Client Technology™

The following terms are trademarks of other companies:

Java, JDBC, JVM, J2EE, J2ME, J2SE, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

ActiveSync, Microsoft, Windows Mobile, Windows, Win32, and the Windows logo are trademarks of Microsoft Corporation
in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
viii The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Preface

The embedded Rich Client Platform (eRCP) is an open source project under the Eclipse
Technology Project using OSGi standards. This IBM® Redpaper covers the eRCP Extension
Point Framework as the basis for creating embedded client platforms and implementing
eSWT, eJFace, and eWorkbench for embedded devices having fewer resources and smaller
screen sizes than a desktop computer.

In this redpaper, you will find information about what APIs, as a subset of SWT for desktops,
are available and apply to Eclipse eSWT basic components, including Core eSWT and
Expanded eSWT. You will also find information to better use JFace as a means for providing
model, view, and controller mobile application paradigms.

This redpaper includes also a sample scenario chosen to illustrate how eRCP applications
are developed to access a local database using DB2® Everyplace®. You will find the
elements of the business processes being put into place, and understand what technologies
were chosen to solve the different parts of the implementation. The sample scenario includes
step by step guidelines to use the proper tools, runtimes, and APIs needed to build, test and
deploy an eRCP application for small devices.

A basic knowledge of Java™ programming and Java technologies is required.

The team that wrote this Redpaper
This Redpaper was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO), Raleigh Center.

Juan R. Rodriguez is a Consulting IT professional at the IBM ITSO
Center, Raleigh. He has an Master of Science degree in Computer
Science from Iowa State University. He writes extensively and teaches
IBM classes worldwide on Web technologies, and information security.
Before joining the IBM ITSO, he worked at the IBM laboratory in
Research Triangle Park, North Carolina as a designer and developer of
networking products.

Chris Aniszczyk is a Software Engineer in the IBM Software Group and
a graduate of the Extreme Blue™ internship program with IBM. During
his college days, Chris attended Worcester Polytechnic Institute at
Worcester, Massachussets. He is an open source enthusiast at heart,
and he works on the Gentoo Linux® distribution and is a committer on
the Eclipse Communication Framework (ECF) and Eclipse Modeling
Framework Tools (EMFT) projects.

Uriel Liu is a Staff Software Engineer at IBM China Development Lab in
Taipei, Taiwan. He received his M.S. degree in Computer Science and
Information Engineering from National Taiwan University. He joined IBM
and devoted in pervasive computing software design, development and
testing, especially on embedded devices. His area of expertise covers
embedded Linux, Microsoft® Windows® Mobile, Qt/e, J2ME™,
WebSphere® Everyplace Access, and WebSphere Everyplace
Deployment. He is also a certified Project Management Professional.
© Copyright IBM Corp. 2006. All rights reserved. ix

Guillermo Villavicencio holds a degree in Informatics Engineering from
the Pontifical Catholic University of Peru. He is the Chief Information
Officer for Carhados Peru, an IBM Business Partner. He has been the
architect for several e-business projects including wireless and Portal
solutions. His current area of expertise is centered around Web
technologies and pervasive computing. He writes and teaches classes
worldwide on Web technologies, and Java Application Development
using Eclipse platforms.

Thanks to the following people for their contributions to this project:

Debbie Willmschen, Editor
ITSO, Raleigh Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners, or customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this
Redpaper or other Redbooks™ in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
x The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction to eRCP

This chapter introduces you to the embedded Rich Client Platform (eRCP) fundamental
topics, terminology, and architecture.

1

© Copyright IBM Corp. 2006. All rights reserved. 1

1.1 Rich Client Platform
Eclipse 3.0 SDK allows developers to enhance easily the functionality of the Integrated
Development Environment (IDE) portion of Eclipse. In addition, these pieces of functionality
(plug-ins) can be installed dynamically or updated without restarting Eclipse. Eclipse
developers ask questions such as can I dump all the plug-ins that come with Eclipse and use
the platform to host only business specific plug-ins that I built?

Users of Eclipse demanded an application model with open architecture, easy configurablity,
install and update support, and user configuration and preferences. Some non-IDE
application developers want to remove IDE-specific features such as built-in editors, views,
and perspectives to have rich functionality with a low footprint. These requirements have
resulted in the development of the Rich Client Platform (RCP). RCP requires a minimum set
of plug-ins with the following major characteristics:

� Specified interfaces: A component must declare its public API and extensions
� Lazy loading: Components are loaded on demand not on startup
� Versioning: Prerequisite components are referenced by name and version
� Dynamic detection: Components are detected dynamically (no need to restart)
� Management: Install, update, remove, and discover components

With these features, RCP application developers can focus effectively on their business logic
without worrying about the core infrastructure. Multiple developers can also create
functionality simultaneously and then access the RCP plug-in infrastructure easily.

1.2 The embedded Rich Client Platform
The RCP application model can be used widely among different device types, including
embedded devices. The RCP platform architecture is well adapted to low-end devices
because multiple applications can run in a single Java Virtual Machine (JVM™) with the
introduction of Open Service Gateway interface (OSGi) technology. The only issue with the
RCP platform is that performance and footprint becomes sensitive and significant in an
embedded environment. The embedded version of RCP, embedded Rich Client Platform
(eRCP) was created to solve these issues.

In essence, eRCP is a smaller application model which is slightly different than RCP. eRCP
includes subset of various components that make up RCP to conserve memory usage and to
produce a smaller footprint. The eRCP team describes eRCP as follows:

eRCP is an Eclipse technology project primarily slated to investigate the suitability of using
various components of the Eclipse platform in a variety of embedded devices such as
mobile phones and PDAs.

The eRCP application model still preserves what’s majorly included in RCP, especially most
of the OSGi framework capabilities. However, eRCP provides only one single system
workbench, which is branded and optimized for a particular device. All applications in eRCP
are plug-ins to this system workbench. Better yet, eRCP applications have no need to provide
their own workbench. That usually makes for a smaller application footprint than what would
normally be found in RCP.
2 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

1.3 Terminology
This section introduces you to the terminologies that are used in the eRCP platform.

1.3.1 Eclipse
Eclipse is an open-source development framework, or workbench, and set of widgets that are
designed for tools developers to leverage code reuse, a consistent user interface, and a
plug-in architecture for developing new packages. While Eclipse was designed originally for
tools developers, it has evolved to become a more general purpose application platform with
its RCP. You can find more information about Eclipse at:

http://www.eclipse.org

1.3.2 Java 2 Micro Edition
Java 2 Micro Edition (J2ME) is a Java platform for consumer and embedded devices. Similar
to the enterprise (J2EE™) and desktop (J2SE™) platforms, J2ME is a set of standard Java
APIs that delivers the power and benefits of Java technology tailored for embedded devices.
It includes a flexible user interface, robust security model, broad range of built-in network
protocols, and support for networked and disconnected applications.

J2ME configurations
J2ME configurations are compromised of a virtual machine (VM) and a minimal set of
libraries that provide the base functionality for a particular range of devices that share similar
characteristics, such as network connectivity and memory footprint. Currently, there are two
J2ME configurations: Connected Limited Device Configuration (CLDC) and Connected
Device Configuration (CDC).

J2ME profiles
Profiles are higher-level APIs that, combined with device configurations, provide a complete
runtime environment that is targeted at specific device categories. Profiles further define the
application life cycle model, the user interface, and access to device-specific properties.

Foundation Profile
CDC profiles are layered so that you can add further profiles as needed to provide application
functionality for different types of devices. The Foundation Profile (FP) is the lowest level
profile for the CDC. FP provides a network-capable implementation of CDC that you can use
for deeply embedded implementations without a user interface. In addition, you can combine
FP with Personal Basis Profile (PBP) and Personal Profile (PP or PPro) for devices that
require a graphical user interface (GUI). It is also possible to write eSWT applications on top
of Foundation Profile to create a rich user interface on top of the foundation.

1.3.3 Open Service Gateway initiative
The Open Service Gateway initiative (OSGi) was founded in March 1999. Its creates open
specifications for the network delivery of managed services to local networks and devices.
The OSGi organization is the leading standard for next-generation internet services for
homes, cars, small offices, and other environments.
Chapter 1. Introduction to eRCP 3

http://www.eclipse.org

The OSGi service platform specification delivers an open, common architecture for service
providers, developers, software vendors, gateway operators, and equipment vendors to
develop, to deploy, and to manage services in a coordinated fashion. Because of its flexible
and managed deployment of services, it enables an entirely new category of smart devices.
The primary targets for the OSGi specifications are set-top boxes, service gateways, cable
modems, consumer electronics, PCs, industrial computers, cars, and more. Devices that
implement the OSGi specifications enable service providers such as telcos, cable operators,
utilities, and others, to deliver valuable services over their networks.

The OSGi specification enables the separation of the service interface from the service
implementation, allowing scalability and extensibility. The SMF framework uses the
information in the bundle manifests to populate its service registry and to manage and to
resolve bundle dependencies. Each bundle has its own class loader and name space as well
as the references between bundles to access each others’ services and is managed by the
framework.

The OSGi platform enables devices of any shape and size to execute a consistent, modular
program model on a well-architected set of framework and core services. This framework
provides services and bundle life cycle management to enable dynamic loading, starting, and
stopping, and more importantly, bundle and services sharing in the VM instance that is
running the platform.

1.3.4 Service Management Framework
Service Management Framework (SMF) is an implementation of the OSGi) Service Platform
specification. The SMF acts as a layer that enables operators to deploy multiple applications
on a single JVM. In addition, it provides a framework for application life cycle, including
delivery to the device as well as dynamic starting and stopping of the applications. Application
developers partition applications into services and other resources. Services and resources
are packaged into bundles. Bundles are files that serve as the delivery unit for applications
and have manifests with special headers that enable the sharing of classes and services at
the package level. Bundles can be started and stopped dynamically, allowing you to update
systems without extended services or downtime. In many cases, you can perform these
updates over the air without any user intervention, interaction, or even awareness.

Additionally, the Eclipse framework has incorporated SMF into its underpinnings. So,
ultimately, the plug-ins that run in Eclipse run as bundles, and you can load, unload, start, and
stop them dynamically. This adds an additional element of flexibility and choice to the
application as well as a more robust platform underneath.
4 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

1.4 Technology overview
Similar to the RCP application model, eRCP provides minimum sets of RCP components to
enable plug-in architecture on an embedded environment. Figure 1-1 shows the architecture
of eRCP. It consists of blocks that are embraced inside a bold orange line. All components are
subsets of the corresponding components in the RCP application model, except for mobile
extension in eSWT, which is a set of controls, widgets, or listeners that are designed
specifically for embedded offerings.

Figure 1-1 The eRCP architecture

1.4.1 The eRCP core
The eRCP core includes a set of runtimes and utilities that support the plug-in application
model. It contains a set of non-graphical tools that facilitate the operations that underlie eRCP
applications. The eXML component that is packaged within eRCP helps applications handle
XML-related issues. The org.eclipse.core.runtimes plug-in works as it does in RCP, as a thin
layer over the OSGi APIs to support plug-ins architecture. The org.eclipse.osgi plug-in is an
implementation that complies with the OSGi service framework that enables life cycle
management of bundle services.

1.4.2 The embedded Standard Widget Toolkit
The embedded Standard Widget Toolkit (eSWT) is a subset of Standard Widget Toolkit
(SWT) that provides a set of controls, panels, and other widgets that are building blocks of
user interfaces. eSWT provides a completely platform-independent API that is integrated
tightly with an operating system’s graphics system. All Java widgets map to a platform’s
native widgets. eSWT offers a seamless environment because the look and feel of Java
applications are visually indistinguishable from native applications.

As a subset of SWT, eSWT provides a set of APIs that are related closely to those of SWT
and encourages reuse of existing SWT applications.
Chapter 1. Introduction to eRCP 5

Figure 1-2 shows how eSWT and eSWT: Mobile Extensions fit into the overall programming
architecture. eSWT is a subset of SWT and is made up of two components:

� The Core portion, which is required on devices.
� The Expanded portion, which is optional.

Figure 1-2 The eSWT UI architecture

The eSWT Mobile Extensions is an optional set that contains the following embedded specific
features:

� eSWT Core

Contains fundamental user interface elements, including low-level graphics, events, and
basic widget infrastructure. This portion of eSWT is device-agnostic and applicable to a
wider range of embedded devices. This component is a strict subset of SWT.

� eSWT Expanded

An optional package that provides more sophisticated user interface elements that are
found commonly on high-end mobile devices and PDAs. This component is a subset of
SWT.

� eSWT Mobile Extension

An optional component that provides user interface elements that are found commonly on
mobile devices. Although many of the mobile device requirements are fulfilled already by
eSWT, this package focuses on critical features that are not defined currently by eSWT.

1.4.3 The embedded JFace
JFace is a user interface toolkit that handles common user interface controls and tasks. It is a
pure Java implementation that works with SWT directly, regardless of the Windows operating
system. JFace includes Action to support shared user interface resources, such as menus,
tool bars, and status lines. Operation provides support for long-running operations,
Preferences provide a preference framework, and Resources support fonts and images
resource management. Util provides useful utilities that are used throughout JFace, including
property change events, a listener list implementation, and runtime checked assertions.
Viewers contains model-based content adapters for SWT widgets, providing common
behavior and higher level operations than available in SWT.

The embedded JFace (eJFace) is a pure subset of the JFace library. It provides advanced
user interface capabilities for embedded devices, and it excludes functions that are either
6 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

desk-top oriented or too large to provide reasonable benefits for the footprint that is
consumed.

eJFace depends on the eSWT: Core and eSWT: Expanded portions of eSWT and J2ME
CDC profile.

1.4.4 The embedded Workbench
The workbench provides user interface functionality and supplies an infrastructure in which
tools can interact with users. In the workbench plug-in model, applications can run
simultaneously inside a single workbench window that controls where and when applications
are displayed. The workbench application model is aligned closely with Eclipse IDE
workbench model. Workbench plug-ins generally provide one or more views.

One difference between the IDE workbench plug-ins and eRCP plug-ins is that eRCP
plug-ins do not provide perspectives. Furthermore, the generic eWorkbench is a stand-alone
application that owns the JVMs GUI thread and manages the launch and display of all eRCP
workbench applications. It can be used as the basis for more advanced workbenches which
take advantage of particular hardware features. For example, a mobile phone with multiple
displays can display some limited information about the front of the phone and a full or normal
view on the larger display. The generic eWorkbench initially displays a list of available
eWorkbench applications. When a user selects one of these available applications, the
application launches and displays. There is also a command for the user to switch back to
application list.

1.4.5 eUpdate
eUpdate provides the update logic and user interface plug-ins for plug-ins that want to contain
update capabilities. Application developers can either write their own update functionality with
the help of these plug-ins or an eUpdate workbench application can provide a complete GUI
for users to configure update sites. In addition, update status information is contained within
this workbench application for user awareness.
Chapter 1. Introduction to eRCP 7

8 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Chapter 2. eSWT fundamentals

This chapter provides an overview of the fundamentals that are contained within the
embedded Standard Widget Toolkit (eSWT). It explains how eSWT is structured and
analyzes its components. It then walks through each of these fundamental components,
which behave as building blocks for other eSWT components. This chapter introduces you to
the eSWT programming model and explains how you can start writing a simple eSWT
application with some mandatory elements.

2

© Copyright IBM Corp. 2006. All rights reserved. 9

2.1 eSWT packaging
eSWT consists of three physical package sets:

� eSWT core
� eSWT expanded
� eSWT mobile extensions

The core and expanded packages are a strict subset of Standard Widget Toolkit (SWT). The
mobile extensions component is a newly created package in embedded Rich Client Platform
(eRCP). It enables the creation of common applications and is modeled after the interfaces of
typical mobile devices, such as phones and PDAs.

2.1.1 eSWT core
eSWT core is the mandatory component that must reside on a device. It is strictly a subset of
SWT and provides the fundamental user interface elements such as display, shell, widget,
controls, and events or listeners. Table 2-1 shows the packages and classes or interfaces that
are contained in eSWT core.

Table 2-1 Packages and classes/interfaces in eSWT core

Note: In terms of what we mean by physical, these three packages can be separated and
put onto devices depending on functionality desire.

Package Class/Interfaces Description

org.eclipse.swt.widgets Button A selectable user interface object that issues notifications when
pressed and released

Canvas A surface for drawing arbitrary graphics

Combo A control that allows the user to choose an item from a list of
items, or optionally enter a new value by typing it into an editable
text field

Composite A control that can contain other controls

Control Abstract superclass of all windowed user interface classes

Decorations It provides the appearance and behavior of shells, but are not top
level shells or dialogs

Dialog Abstract superclass of the classes that represent the built in
platform dialogs

Display It is responsible for managing the connection between SWT and
the underlying operating system, also implements the SWT event
loop in terms of the platform event model

Event It provides a description of a particular event which occurred
within SWT

FileDialog It allows the user to navigate the file system and select or enter
a file name

Item Abstract superclass of all non-windowed user interface objects
that occur within specific controls
10 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

org.eclipse.swt.widgets Label It represents a non-selectable user interface object that displays
a string or image

Layout A layout controls the position and size of the children of a
composite widget, it is the abstract base class for layouts

List It represents a selectable user interface object that displays a list
of strings and issues notification when a string selected

Menu User interface objects that contain menu items

MenuItem It represents a selectable user interface object that issues
notification when pressed and released

MessageBox It is used to inform or warn the user

ProgressBar It represents an unselectable user interface object that is used to
display progress, typically in the form of a bar

Scrollable Abstract superclass of all classes which represent controls that
have standard scroll bars

Scrollbar Selectable user interface objects that represent a range of
positive, numeric value

Shell It represents the windows which the desktop or window manager
is managing

Slider Selectable user interface objects that represent a range of
positive, numeric values

Synchronizer It provides synchronization support for displays. A default
instance is created automatically for each display, and this
instance is sufficient for almost all applications

Text Selectable user interface objects that allow the user to enter and
modify text

TypedListener Instances of this class are internal SWT implementation objects
that provide a mapping between the typed and untyped listener
mechanisms that SWT supports

Package Class/Interfaces Description
Chapter 2. eSWT fundamentals 11

org.eclipse.swt.graphics Color Instances of this class manage the operating system resources
that implement SWTs RGB color model

Device Abstract superclass of all device objects, such as the Display
device

Font Instances of this class manage operating system resources that
define how text looks when it is displayed

FontData Instances of this class describe operating system fonts

FontMetrics Instances of this class provide measurement information about
fonts including ascent, descent, height, leading space between
rows, and average character width

GC It is where all of the drawing capabilities that are supported by
SWT are located

Image Instances of this class are graphics which have been prepared
for display on a specific device

ImageData Instances of this class are device-independent descriptions of
images

PaletteData Instances of this class describe the color data used by an image

Point Instances of this class represent places on the (x, y) coordinate
plane

Rectangle Instances of this class represent rectangular areas in an (x, y)
coordinate system

Resource Abstract superclass of all graphics resource objects

RGB Instances of this class are descriptions of colors in terms of the
primary additive color model (red, green, and blue)

Package Class/Interfaces Description
12 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

org.eclipse.swt.events ControlEvent/
ControlListener

Deal with the events that are generated by moving and resizing
controls

DisposeEvent/
DisposeListener

Deal with the event that is generated when a widget is disposed

FocusEvent/
FocusListener

Deal with the events that are generated as controls gain and lose
focus.

KeyEvent/
KeyListener

Deal with the events that are generated as keys are pressed on
the system keyboard

MenuEvent/
MenuListener

Deal with the hiding and showing of menus

ModifyEvent/
ModifyListener

Deal with the events that are generated when text is modified

MouseEvent/
MouseListener/
MouseMoveListener

Deal with the events that are generated as mouse buttons are
pressed or mouse move

PaintEvent/
PaintListener

Deal with the events that are generated when the control needs
to be painted

SelectionEvent/
SelectionListener

Deal with the events that are generated when selection occurs in
a control

ShellEvent/
ShellListener

Deal with changes in state of Shells

TraverseEvent/
TraverseListener

Deal with the events that are generated when a traverse event
occurs in a control

TypedEvent Super class for all typed event classes provided by SWT

VerifyEvent/
VerifyListener

Deal with the events that are generated when text is about to be
modified

org.eclipse.swt.layout FormLayout/
FormData/
FormAttachment

Instances of this class control the position and size of the children
of a composite control by using FormAttachments to optionally
configure the left, top, right, and bottom edges of each child

org.eclipse.swt SWT It provides access to a small number of SWT system-wide
methods, and in addition defines the public constants provided
by SWT

SWTException This runtime exception is thrown whenever a recoverable error
occurs internally in SWT

SWTError This error is thrown whenever an unrecoverable error occurs
internally in SWT

Package Class/Interfaces Description
Chapter 2. eSWT fundamentals 13

2.1.2 eSWT expanded
eSWT expanded is an optional component that contains more sophisticated user interface
elements and layouts. This functionality is found commonly on high-end mobile devices and
PDAs. Table 2-2 lists the packages and classes or interfaces that are contained in eSWT
expanded.

Table 2-2 Packages and classes/interfaces in eSWT expanded

Package Class/Interfaces Description

org.eclipse.swt.widgets ColorDialog Allows the user to select a color from a predefined set of available
colors

DirectoryDialog Allows the user to navigate the file system and select a directory

FontDialog Allows the user to select a font from all available fonts in the
system

Table/
TableColumn
TableItem

A selectable user interface object that displays a list of images and
strings and issue notification when selected

Tree/
TreeItem

A selectable user interface object that displays a hierarchy of
items and issue notification when an item in the hierarchy is
selected

org.eclipse.swt.browser Browser Implements the browser user interface metaphor. Allows the user
to visualize and navigate through HTML documents

LocationEvent/
LocationListener

Deal with the events that are generated when a Browser
navigates to a different URL

ProgressEvent/
ProgressListener

Deal with the events that are generated during the loading of the
current URL or when the loading of the current URL has been
completed

StatusTextEvent/Sta
tusTextListener

Deal with the events that are generated when the status text for a
Browser needs to be updated

TitleEvent/
TitleListener

Deal with the events that are generated when the title of the
current document is available or when it is modified

org.eclipse.swt.dnd ByteArrayTransfer Provides a platform specific mechanism for converting a Java
byte[] to a platform specific representation of the byte array and
vice versa

Clipboard Provides a mechanism for transferring data from one application
to another or within an application

TextTransfer Provides a platform specific mechanism for converting plain text
represented as a java String to a platform specific representation
of the data and vice versa

Transfer Provides a mechanism for converting between a Java
representation of data and a platform specific representation of
data and vice versa

TransferData A platform specific data structure for describing the type and the
contents of data being converted by a transfer agent

org.eclipse.swt.graphics ImageLoader Used to load images from and save images to a file or stream
14 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

2.1.3 eSWT mobile extensions
eSWT mobile extensions is an optional package that provides user interface elements that
are found commonly on mobile devices. Table 2-3 lists the packages and classes or interfaces
that are contained in eSWT mobile extensions.

Table 2-3 Packages and classes/interfaces in eSWT mobile extensions

Package Class/Interfaces Description

org.eclipse.ercp.swt.mobile CaptionedControl Used to display a label (caption) in front of a control. An optional
trailing text can be used after the control

Command A metaphor that represents a general action

ConstrainedText A single-line Text control which constrains the user input by
styles

DateEditor A special data entry control that allows users to enter or choose
a date

HyperLink Represents a selectable user interface object that launches
other applications when activated by the user

Input Instances of this class represent key based input features

ListBox/
ListBoxItem

Represents a selectable user interface object that displays a
list of items consisting of text and icons from a data model

ListView A widget that allows the user to select one or more items from
a collection of items that can be displayed in a multi-column
way with different styles

MobileDevice/
MovileDeviceEvent/
MobileDeviceListener

Instances of this class represent the device that is being used.
It provides methods that enable applications to learn more
about the device specific characteristics and capabilities

MobileShell A shell particularly suitable for devices that require dynamic
change of trims at runtime

MultiPageDialog Instances of this class represents a tabbed dialog

QueryDialog A modal window used to prompt the user for data input

Screen/
ScreenEvent/
ScreenListener

Instances of this class represent display screens available for
application use

SortedList Represents a selectable user interface object that displays a
sorted list of text items

TaskTip Provides feedback to the user about the state of a long-running
task

TextExtension Contains methods for extending the functionality of the Text
control

TimedMessageBox A modal window that is used to inform the user of limited
information using a standard style
Chapter 2. eSWT fundamentals 15

2.2 Creating a complete eSWT program
Example 2-1 produces a complete eSWT program that creates an empty window that
displays the message HelloWorld from eSWT on the application title bar.

Example 2-1 HelloWorld application in eSWT

import org.eclipse.swt.widgets.*;

public class HelloWorldeSWT {

public static void main(String[] args) {
Display display = new Display();
Shell shell = new Shell(display);
shell.setSize(300,300);
shell.setText("HelloWorld from eSWT");
shell.open();

while (!shell.isDisposed()) {
if (!display.readAndDispatch())

display.sleep();
}
display.dispose();

}
}

The org.eclipse.swt.widgets package contains the most commonly used widgets in eSWT
applications. In main(String[] args]), every eSWT application needs to create a display to
build up a connection between the eSWT application and the underlying graphics system.
Next, we create a shell and set the shell’s size and title.

Shells that are created based on the display are referred to as top-level windows. The
shell.open() method makes the shell visible to the user. Inside the while () loop, we
establish an explicit loop that reads and dispatches user events from the operating system. If
no more events are available, display.sleep() is called and goes to sleep waiting for the next
event. The display.dispose() call at the last line of code explicitly disposes the display and
releases any associated resources from the eSWT application.

Note: Even though resources are disposed automatically when an application exits, it is
considered good programming style to release all widgets that you create manually.
16 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Figure 2-1 shows the result of the HelloWorld application running on Windows XP. The size of
the shell that we set is 300x300.

Figure 2-1 Result of the HelloWorld application running on Windows XP

Figure 2-2 shows the same application running on Pocket PC. eSWT uses underlying
graphics systems to draw its user interface elements. The user cannot tell the native
applications apart because they look and feel very similar. In this case, the only visual
difference is that on Pocket PC, eSWT maximizes the top-level shell for a consistent user
interface behavior with native applications. So, shell.setSize() does not take effect for
top-level windows on Pocket PC.

Figure 2-2 Result of the HelloWorld application running on Pocket PC

2.3 The Display class
The Display class is responsible for managing the connection between SWT and the
underlying window system. It implements the SWT event loop in terms of the system event
loop. The display provides other important methods for inter-thread communications, timers,
and access to resources of operating system.

The display in SWT is not Widget, although many concepts are shared between these
classes. On the whole, Display is a very powerful class that abstracts common operating
Chapter 2. eSWT fundamentals 17

system APIs to provide a way to access low-level resources such as fonts, colors, or other
system attributes.

2.3.1 Events and listeners
The Display sends events using untyped listeners. There are two methods that are related to
listeners defined in Display:

� addListener(int event, Listener listener)

Adds the listener to the collection of listeners who are notified when an event of the given
type occurs. When the event does occur in the display, the listener is notified by the
handleEvent() message.

� removeListener(int event, Listener listener)

Removes the listener from the collection of listeners who are notified when an event of the
given type occurs.

2.3.2 Event filters
Event filters acts similar to a global listener. To filter an event and then do something works
similar to an event listener. Filters run before all the other event listeners, which gives an
application an opportunity to modify an event’s attribute or just stop issuing the event. There
are two methods that are related to filters that are defined in Display:

� addFilter(int eventType, Listener listener)

Adds the listener to the collection of listeners who are notified when an event of the given
type occurs anywhere in this display. When the event does occur, the listener is notified by
the handleEvent() message.

� removeFilter(int eventType, Listener listener)

Removes the listener from the collection of listeners who are notified when an event of the
given type occurs.

Example 2-2 shows how to add a filter via the addFitler() method. It adds a filter that listens
to the SWT.FocusIn event of all controls. In handleEvent(), we output the widget that triggers
the event. On the whole, the addFilter() method is a global listener of a specified event.

Example 2-2 addFilter snippet

display.addFilter(SWT.FocusIn, new Listener(){

public void handleEvent(Event event) {
System.out.println("Focused widget: "+event.widget);

}});

Note: Pay attention to using filters. Filters are powerful because they grab all events, but
on the other hand, they block all controls’ listeners as well. For example, if you have a
time-consuming operation for SWT.FocusIn inside handleEvent(), all controls get focused
slowly, which definitely impacts usability. Note, however, that even filters should be used
sparingly.
18 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

2.3.3 Shells and focus control
The Display keeps a list of shells that are created upon it, including the active shell that is
ready for user manipulation. Furthermore, it keeps focus control information. There are three
methods that are related to shells and to focus control:

� getActiveShell()

Returns the currently active shell, or null if no shell is active that belongs to the currently
running application.

Example 2-3 demonstrates how we get active shell and then set its title.

Example 2-3 getActiveShell() snippet

Shell shell = display.getActiveShell();
shell.setText(“Active Shell“);

� getShells()

Returns a (possibly empty) array that contains all shells that have not been disposed and
that have the receiver as their display.

Example 2-4 demonstrates how we get all shells and then output their titles via walking
through the array of shells.

Example 2-4 getShells() snippet

Shell[] shells = display.getShells();
for (int i=0; i< shells.length; i++) {

System.out.println(“title of shell “+”i”+” is “+shells[i].getText());
}

� getFocusControl()

Returns the control that has keyboard focus currently, or null if keyboard events are not
going to any of the controls that are built by the currently running application.

2.3.4 System information
The Display can be used to retrieve system information (resources such as display depth,
DPI®, fonts, and colors). These objects are available for use but owned by the operating
system.

There are several methods that are related to system information:

� getDepth()

Returns the bit depth of the screen that is the number of bits that it takes to represent the
number of unique colors that the screen is capable of displaying currently. This number is
typically one of 1, 8, 15, 16, 24, or 32. getDepth() is not defined in Display but is inherited
from Device.

� getDPI()

Returns a point whose x coordinate is the horizontal dots per inch of the display and
whose y coordinate is the vertical dots per inch of the display. getDpi() is not defined in
Display but is inherited from Device.

Note: Do not try to release these objects via a method similar to the dispose() method
because this might injure the operating system with unpredictable results.
Chapter 2. eSWT fundamentals 19

� getIconDepth()

Returns the maximum allowed depth of icons on this display in bits per pixel. On some
platforms, this value might be different than the actual depth of the display.

� getSystemColor()

Returns the matching standard color for the given constant, which should be one of the
color constants that is specified in class SWT. System colors are pre-allocated, and
because you do not allocate these colors, they should not be discarded or disposed.
Example 2-5 shows how to get a Color object of white in system.

Example 2-5 getSystemColor() snippet

Color white = display.getSystemColor(SWT.COLOR_WHITE);

2.4 Composite and shell
This section presents an overview of composites and shells.

2.4.1 Composite
Composite is a control that can be used to contain other controls. It acts as a container with
layout to position its children automatically.

Composite style
Table 2-4 shows what styles can be used to construct a Composite instance.

Table 2-4 Composite styles

Getting the children
Composite keeps a list of all its children. Applications can use getChildren() to query this
information using the following:

� getChildren()

Returns a (possibly empty) array that contains the receiver's children. Children are
returned in the order that they are drawn. getChildren() is a copy of the array of children
and takes no effect on real children that are contained within Composite if an application
tries to modify the array.

Style Description

SWT.H_SCROLL Create a horizontal scroll bar

SWT.V_SCROLL Create a vertical scroll bar

SWT.NO_BACKGROUND Do not fill the background when painting

SWT.NO_REDRAW_RESIZE Do not redraw when resize event happens

SWT.NO_MERGE_PAINTS Do not merge invalidated rectangles when painting

SWT.NO_FOCUS Do not take focus

SWT.NO_RADIO_GROUP Disable radio button behavior
20 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Example 2-6 shows how to print out each control that is contained in an instance of
Composite.

Example 2-6 snippet of getChildren()

Control[] children = composite.getChildren();
for (int i=0; i<children.length; i++) {

System.out.println(“Child “+i+” is “+children[i]);
}

Getting the tab traversal order
Applications can explicitly get or set the tab traversal order within a Composite. There are two
methods that are related to tab traversal:

� getTabList()

Gets the (possibly empty) tabbing order for the control.

� setTabList(Control[] tablist)

Sets the tabbing order for the specified controls to match the order that they occur in the
argument list.

Layout
Composite can set layout related data to help in positioning and sizing its children according to
the characteristic of Layout.

2.4.2 Shell
Instances of Shell represent a window that a desktop or window manager is controlling.
Instances without a parent, where only one instance of Display is passed in as argument, are
called top-level shells. Shells that are parented under another shell are called dialog shells.

Shell styles
Table 2-5 shows styles used in Shell.

Table 2-5 Shell styles

Note: Top-level shells are maximized at windows mobile device, because this behavior is
similar with other native applications. MobileShell contained within the mobile extensions
component of eSWT should be used on mobile devices because it works similar to Shell
but provides addition embedded specific features such as full-screen support.

Style Description

SWT.BORDER Provide a border around the shell

SWT.CLOSE Provide a close button

SWT.MIN Provide a minimize box

SWT.MAX Provide a minimize box

SWT.RESIZE Provide a resizable border

SWT.TITLE Provide a title bar

SWT.NO_TRIM Force the shell to have no trim

SWT.APPLICATION_MODAL Make the shell application
Chapter 2. eSWT fundamentals 21

Shell events
Applications can use the following types of Shell events via ShellListener:

� SWT.Activate

Sent whenever the shell is activated.

� SWT.Deactivate

Sent whenever the shell is inactive.

� SWT.Iconfy

Sent whenever the shell is iconized.

� SWT.Deiconify

Sent whenever the shell is no longer iconized.

� SWT.Close

Sent whenever the shell is closed.

Opening and closing the shell
Unlike other controls in eSWT, shells are invisible when created. Thus, applications have to
make shells visible so that the shell is usable. You can use the open() method to bring the
shell in front of user. The open() method moves the shell to the top of the drawing order for
the display on which it was created. All other shells on that display, which are not this shell’s
children, are drawn behind it. The open() method also marks the shell as visible, sets the
focus, and asks the window manager to make the shell active.

Users can close the shell by tapping the close box of the shell. Alternatively, the application
can close the shell programatically using the close() method. The close() method requests
that the window manager close the shell in the same way that the window would close if the
user clicks the close box or performs some other platform specific key or mouse combination
that indicates the window should be removed.

Using MenuBar
MenuBar provides a means for a user to manipulate shortcut functionalities while traversing in
menus. Menu is discouraged for use in mobile device because Command in the mobile
extensions component provides a more sophisticated way to handle menus. For example,
Command can map its action to configurable hardware button on device automatically, which
provides the user a handy means to trigger a default action.

2.5 Events and listeners
An event is an indication that something has happened. It could be issued as key down or
mouse release when the user presses a key or releases the mouse. The Event class contains
detailed information about the event, such as widget to represent which widget triggered the
event, doit to represent if the event should be performed or not, type to represent the event
type, and so forth. The triggered event is delivered to application via a listener.

SWT.MODELESS Make the shell modeless

SWT.PRIMARY_MODAL Make the shell primary modal

SWT.SYSTEM_MODAL Make the shell system modal

Style Description
22 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

An instance of listener provides an interface to implement the methods that are invoked when
appropriate. Listener methods take an instance of an event as an argument.

eSWT has two types of listeners: untyped and typed.

2.5.1 Untyped listeners
Untyped listeners provide a generic way to monitor any type of events that are defined in
eSWT. In terms of Java classes, only two Java classes are used in untyped listeners:
org.eclipse.swt.widgets.Listener and org.eclipse.swt.widgets.Event.

The following methods are related to untyped listeners:

� addListener(int event, Listener listener)

Adds the listener to the collection of listeners who are notified when an event of the given
type occurs. When the event does occur in the widget, the listener is notified by the
handleEvent() message.

� notifyListener(int type, Event event)

Notifies all of the receiver's listeners for events of the given type that one such event has
occurred by invoking their handleEvent() method. Applications can use this method to
send a specific type of event; however, calling notifyListener() does not cause real
operating system event happens.

� removeListener(int type, Listener listener)

Removes the listener from the collection of listeners who are notified when an event of the
given type occurs.

Table 2-6 shows event types along with description of all untyped events that are defined in
eSWT.

Table 2-6 Untyped events

Note: In order to remove a listener, you should remove the exact listener that you added. If
you added an instance of listeners multiple times, you should also remove that instance if
you do not want the listener to take effect any more.

Event Type Description

SWT.KeyDown A key was pressed

SWT.KeyUp A key was released

SWT.MouseDown A mouse button was pressed

SWT.MouseUp A mouse button was released

SWT.MouseMove The mouse was moved

SWT.MouseEnter The mouse entered the client area of control

SWT.MouseDoubleClick A mouse button was double clicked

SWT.Paint A control was asked to paint

SWT.Move Control’s position changed

SWT.Resize The size of control’s client area changed

SWT.Dispose The control was disposed
Chapter 2. eSWT fundamentals 23

2.5.2 Typed listeners
Typed listeners provide a more meaningful listener class with corresponding events. Some
agreed upon methods are defined for each listener interface for applications to implement.
For example, to listen for selection on a widget, you can use the following two methods:

� addSelectionListener(SelectionListener listener)

Adds the listener to the collection of listeners who are notified when the receiver's
selection changes by sending it one of the messages that are defined in the
SelectionListener interface.

The widgetSelected() method is called when the combo's list selection changes. The
widgetDefaultSelected() method is called typically when Enter is pressed the combo's
text area.

� removeSelectionListener(SelectionListener listener)

Removes the listener from the collection of listeners who are notified when the receiver's
selection changes. The listener to be removed should be the exact one you that added
with addSelectionListener().

SWT.Selection The widget was selected

SWT.DefaultSelection The default selection event happened in the widget

SWT.FocusIn The widget gets focus

SWT.FocusOut The widget lost focus

SWT.Expand A tree item was expanded

SWT.Collapse A tree item was collapsed

SWT.Iconfy The shell was minimized

SWT.Deiconfy The shell goes back to its original size before iconized

SWT.Close The shell is closed

SWT.Show The widget becomes visible

SWT.Hide The widget is hidden

SWT.Modify Content has been changed in the control

SWT.Verify Text is to be verified in the control

SWT.Active The control is activated

SWT.Deactive The control is deactivated

SWT.MenuDetect The user requests a context menu

SWT.Traverse A keyboard navigation happened

SWT.HardKeyDown A hardware button is pressed

SWT.HardKeyUp A hardware button is released

Event Type Description
24 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Table 2-7 shows all typed events that are supported in eSWT. Some are not defined in SWT
because they are newly created in mobile extension.

Table 2-7 Typed events

Event Listener Methods

ControlEvent ControlListener controlMoved(ControlEvent)
controlResized(ControlEvent)

DisposeEvent DisposeListener widgetDisposed(DisposeEvent)

FocusEvent FocusListener focusGained(FocusEvent)
focusLost(FocusEvent)

KeyEvent KeyListener keyPressed(KeyEvent)
keyRelease(KeyEvent)

MenuEvent MenuListener menuHidden(MenuEvent)
menuShown(MenuEvent)

Modifyevent ModifyListener modifyText(ModifyEvent)

MouseEvent MouseListener mouseDoubleClick(MouseEvent)
mouseDown(MouseEvent)
mouseUp(MouseEvent)

MouseEvent MouseMoveListener mouseMove(MouseEvent)

PaintEvent PaintListener paintControl(PaintEvent)

SelectionEvent SelectionListener widgetDefaultSelected(SelectionEvent)
widgetSelected(SelectionEvent)

ShellEvent ShellListener shellActivitated(ShellEvent)
shellClosed(ShellEvent)
shellDeactivated(ShellEvent)
shellDeiconified(ShellEvent)
shellIconfied(ShellEvent)

TraverseEvent TraverseListener keyTraversed(TraverseEvent)

TreeEvent TreeListener treeCollapsed(TreeEvent)
treeExpanded(TreeEvent)

VerifyEvent VerifyListener verifyText(VerifyEvent)

MobileDeviceEvent MobileDeviceListene
r

deviceChanged(MobileDeviceEvent)
inputChanged(MobileDeviceEvent)
screenChanged(MobileDeviceEvent)

ScreenEvent ScreenListener screenActivated(ScreenEvent)
screenDeactivated(ScreenEvent)
screenOrientationChanged(ScreenEvent)
Chapter 2. eSWT fundamentals 25

2.6 Mouse
Mouse in eSWT is a piece of existing code that represents code in SWT. You should not use
Mouse because applications will not get into your Mouse handling code in devices without a
pointer mechanism such as a stylus.

Mouse events
There are typed events and untyped events that relate to Mouse. Table 2-8 shows untyped
events, and Table 2-9 shows typed events that are provided by eSWT.

Table 2-8 Untyped events in Mouse

Table 2-9 Typed events in Mouse

Selection
Selection is a major action when users tap on controls. SelectionEvent is sent when some
control is selected. SelectionEvent can happen with other events simultaneously. For
example, when the user selects text, SelectionEvent and FocusIn events are triggered within
a single click. Table 2-10 shows two selection events for untyped events, and Table 2-11
shows for typed events.

Table 2-10 Untyped Selection events

Table 2-11 Typed Selection events

Event Type Description

SWT.MouseDown The mouse was pressed

SWT.MouseUp The mouse was pressed

SWT.MouseMove The mouse was moved

SWT.MouseEnter The mouse entered a control

SWT.MouseExit The mouse exited a control

SWT.MouseDoubleClick The mouse was double clicked

Typed Event Listener Methods

MouseEvent MouseListener mouseDouvleClick(MouseEvent)
mouseDown(MouseEvent)
mouseUp(MouseEvent)

MouseEvent MouseMoveListener mouseMove(MouseEvent)

Untyped Event Description

SWT.Selection The user selected a control

SWT.DefaultSelection The user did a default selection to a control, for example, press
Enter in text.

Typed Event Listener Methods

SelectionEvent SelectionListener widgetDefaultSelected(SelectionEvent)
widgetSelected(SelectionEvent)
26 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

2.7 Keyboard
In this section, we discuss characters and keyboard input, including keyboard events, focus
events, key events, and accelerators.

2.7.1 Keyboard events
When a control gets focus, all keyboard events go into the control until the focus is caught by
another control. In addition to user operation to make a control obtain focus, the application
can assign the focus to a control by using the setFocus() method. The setFocus() method
causes the receiver to have the keyboard focus, such that all keyboard events are delivered
to it. Not all controls can get focus. Label is one of them. For Composite, it tries to reassign
focus to its first child, if one exists. Focus is not acquired in disabled or hidden control.

Applications can also use isFocusControl() to check if a control gets focus.

2.7.2 Focus events
eSWT provides some focus events. Table 2-12 lists the untyped events, and Table 2-13 lists
the typed events.

Table 2-12 Untyped events for focus

Table 2-13 Typed event for focus

Example 2-7 demonstrates how to use FocusListener.

Example 2-7 FocusListener sample

import org.eclipse.swt.SWT;
import org.eclipse.swt.events.FocusEvent;
import org.eclipse.swt.events.FocusListener;
import org.eclipse.swt.layout.RowLayout;
import org.eclipse.swt.widgets.*;

public class FocusSample {

public static void main(String[] args) {
final Display display = new Display();
final Shell shell = new Shell(display);
shell.setLayout(new RowLayout());
final Text text1 = new Text(shell, SWT.SINGLE | SWT.BORDER);
text1.setText("text1");
final Text text2 = new Text(shell, SWT.SINGLE | SWT.BORDER);
text2.setText("text2");

final Label label = new Label(shell, SWT.BORDER);
FocusListener focusListener = new FocusListener(){

Untyped Event Description

SWT.FocusIn The control gets focus

SWT.FocusOut The control looses focus

Typed event Listener Method

FocusEvent FocusListener focusGained(FocusEvent)
focusLost(FocusEvent)
Chapter 2. eSWT fundamentals 27

public void focusGained(FocusEvent e) {
if (e.widget == text1) {

label.setText("text 1 gains focus");
}
if (e.widget == text2) {

label.setText("text 2 gains focus");
}
shell.layout();

}

public void focusLost(FocusEvent e) {
}};

text1.addFocusListener(focusListener);
text2.addFocusListener(focusListener);
shell.setSize(300,300);
shell.setText("Focus");
shell.open();

while (!shell.isDisposed()) {
if (!display.readAndDispatch())

display.sleep();
}
display.dispose();

}
}

Example 2-7 creates two Text widgets and a Label widget. The content of Label changes
along with the focus between the two Text widgets. Figure 2-3 shows the result of this
example when text1 gets focus.

Figure 2-3 Focus effect when text1 gets focus
28 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Figure 2-4 shows the result when text2 gets focus.

Figure 2-4 Focus effect when text2 gets focus

2.7.3 Key events
When a user presses or releases a key, key event is delivered to application. eSWT provides
some key events. Table 2-14 shows the untyped key events and Table 2-15 shows typed key
events.

Table 2-14 Untyped key events

Table 2-15 Typed key events

2.7.4 Accelerators
eSWT has MenuItem and Command to support accelerators. Accelerators simply represent
keyboard shortcuts. Accelerators produce the same result when users tap on a menu item.
When applications have accelerators in MenuItem or Command, they are global to the window.
When users input an accelerator key, no matter which control gets focus, this combination of
keys is consumed, and an accelerator action is triggered.

In eSWT, accelerators are defined as integer variables. Table 2-16 shows some accelerator
examples.

Table 2-16 Accelerator example

Untyped Event Description

SWT.KeyDown A key was pressed

SWT.KeyUp A key was released

Typed Event Listener Methods

KeyEvent KeyListener keyPressed(KeyEvent)
keyReleased(KeyEvent)

Accelerator Description

SWT.CONTROL | ‘C’ Combination of Ctrl + C keys

SWT.CONTROL | SWT.SHIFT | ‘T” Combination of Ctrl + Shift + T keys
Chapter 2. eSWT fundamentals 29

There are two methods that you can set to retrieve an accelerator of MenuItem and Command:

� setAccelerator(int accelerator)

Sets the widget accelerator. An accelerator is the bit-wise OR of zero or more modifier
masks and a key.

� getAccelerator()

Returns the widget accelerator. An accelerator is the bit-wise OR of zero or more modifier
masks and a key.

Note: However, the use of accelerators does not generate exceptions or unexpected
failures for your application. It simply has no effect in the Pocket PC.
30 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Chapter 3. eSWT core

This chapter provides a detailed, API-level description of the components that are found
within embedded Standard Widget Toolkit (eSWT) core that were not discussed in Chapter 2,
“eSWT fundamentals” on page 9.

eSWT core is discussed first because it contains the most commonly used widgets in
embedded Rich Client Platform (eRCP). Also, it provides a great introduction to learning
about eSWT. If you are already familiar with SWT, then this chapter provides an
easy-to-follow guide, due to similarities between the two toolkits.

This chapter discusses the following types of eSWT core components:

� Controls

– Label
– Button
– Text
– List
– Combo box
– Dialog window
– MessageBox
– FileDialog
– Menu
– ScrollBar and Slider widgets
– ProgressBar

� Layouts

– FormLayout

3

© Copyright IBM Corp. 2006. All rights reserved. 31

3.1 Controls
Controls are the basic building blocks in eSWT application programs. This section describes
eSWT core controls.

3.1.1 Label
Labels are the simplest widgets in eSWT. They represent a non-selectable object that acts as
a string, image, or separator. Labels used to adorn other eSWT widgets such as a dialog.

Example
Figure 3-1 demonstrates several different types of labels, including text, image, and separator
based labels.

Figure 3-1 An example of a few label types

Styles
Table 3-1 describes label styles.

Table 3-1 Label styles

Style Description

SWT.SEPARATOR Draw a separator instead of text or image

SWT.HORIZONTAL Draw a separator horizontally

SWT.VERTICAL Draw a separator vertically

SWT.SHADOW_IN Draw a separator with an inward shadow effect

SWT.SHADOW_OUT Draw a separator with an outward shadow effect

SWT.SHADOW_NONE Draw a separator with no shadow effects

SWT.CENTER Center align a label

SWT.LEFT Left align a label

SWT.RIGHT Right align a label

SWT.WRAP Wrap text to fit within the visible area
32 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Events
Labels are non-selectable widgets (commonly known as static components) that take no
action when focused or selected. Therefore, no events are available to use within a label.

Text and Images
Labels allow you to set a string (text) or image (but not both). You can use the following
methods with labels:

� setText(String string)

Sets the text of the label.

� getText()

Returns the text of the label. Note that this is an empty string if the label is a separator, is
an image, or has not been set at all.

� setImage(Image image)

Sets the image of the label.

� getImage()

Returns the image of the label or null if not set.

Alignment
Labels can be aligned with SWT.LEFT, SWT.CENTER, or SWT.RIGHT styles.

� setAlignment(int alignment)

Sets the alignment of how the text or image is displayed. The valid styles are SWT.LEFT,
SWT.CENTER, or SWT.RIGHT.

� getAlignment()

Returns the alignment.

Snippets
A snippet is a minimal program that demonstrates a specific piece of functionality. Snippets
are used throughout this book as method to understand widgets in a simple way. Example 3-1
is a snippet that creates a Label with a separator. Example 3-2 is a snippet that creates a
label with text that is left aligned. Example 3-3 is a snippet that creates a label with an image
that is center aligned.

Example 3-1 Label: Creating a Label with a separator

Label separatorLabel = new Label(composite, SWT.SEPARATOR);

Example 3-2 Label: Creating a Label with text, left aligned

Label textLabel = new Label(composite, SWT.LEFT);
textLabel.setText(“A left-aligned label”);

Example 3-3 Label: Creating a Label with an image, center aligned

Label imageLabel = new Label(composite, SWT.NONE);
Image image = new Image(composite.getDisplay(), getClass().getResourceAsStream(“img.gif”);
imageLabel.setImage(image);
Chapter 3. eSWT core 33

3.1.2 Button
Buttons are commonly found in desktop applications because desktop computers have
pointer devices (such as a mouse). Pointer devices allow users to select buttons and handle
selection events.

Example
Figure 3-2 demonstrates the appearance of a button.

Figure 3-2 A sample button and label

Styles
Table 3-2 describes button styles.

Table 3-2 Button styles

Tip: The use of buttons is discouraged because most mobile devices are not paired with a
pointer device. Therefore, buttons on these devices must be selected using controls such
as arrow keys. To get around this issue, you can check via the MobileDevice class to see if
the screen is a touch screen and create buttons when appropriate.

Style Description

SWT.CHECK Create a check button

SWT.PUSH Create a push button

SWT.RADIO Create a radio button

SWT.TOGGLE Create a toggle button

SWT.FLAT Draw a button with a flat look

SWT.LEFT Left align a button

SWT.RIGHT Right align a button

SWT.CENTER Center align a button

Note: Only one of the button styles: SWT.CHECK, SWT.PUSH, SWT.RADIO and SWT.TOGGLE can
be specified. This also applies to the alignment styles: SWT.LEFT, SWT.CENTER and
SWT.RIGHT.
34 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Event
Table 3-3 describes the button event.

Table 3-3 Button event

The SWT.Selection event is sent whenever a user interacts with a button (via a click or a
keyboard selection). There are two ways to listen for selections on a button:

� Using the convenience method found on the Button class (Example 3-4)

� Using the addListener(int event, Listener listener) method from the inherited Widget
class.

Example 3-4 Button: Adding a listener to a button via the convenience method

button.addSelectionListener(new SelectionListener() {
public void widgetDefaultSelected(SelectionEvent e) {}
public void widgetSelected(SelectionEvent e) {

System.out.println(“The button was pressed!”);
}

});

Text and images
Buttons allow you to set a string (text) or image (but not both). You can use the following
methods with buttons:

� setText(String string)

Sets the text of the button.

� getText()

Returns the text of the button. Note that this is an empty string if the button is an image or
has not been set at all.

� setImage(Image image)

Sets the image of the button.

� getImage()

Returns the image of the label or null if not set.

Alignment
Buttons can be aligned with SWT.LEFT, SWT.CENTER, or SWT.RIGHT styles. The use of
button alignment is discouraged, because it can cause the buttons to appear out of place.
You can use the following methods with button alignment:

� setAlignment(int alignment)

Sets the alignment of how the text or image is displayed. The valid styles are SWT.LEFT,
SWT.CENTER, or SWT.RIGHT.

� getAlignment()

Returns the alignment.

Event Description

SWT.Selection The button was selected

Note: To listen for radio button events, you have to get the selection before performing
your desired action.
Chapter 3. eSWT core 35

Snippets
Example 3-5 illustrates how a simple push button is created.

Example 3-5 Creating a simple push button

Button pushButton = new Button(composite, SWT.PUSH);
pushButton.setText(“Push me!”);

3.1.3 Text
Text widgets allow users to edit strings. These strings can range from multi-line text to even
password fields. Text widgets are selectable which means a user has control over what
characters are selected. If no characters are selected, it is indicated by a caret (a thin vertical
stripe).

Example
Figure 3-3 displays a couple of captioned controls along with corresponding text widgets. Text
widgets are perfect for user input.

Figure 3-3 A couple of captioned controls with corresponding text widgets

Styles
Table 3-4 describes text styles.

Table 3-4 Text styles

Events
The following text events are available:

� SWT.DefaultSelection

This event is only relevant to single-line text controls. It commonly happens when a user
presses Enter (or the equivalent) as input.

Style Description

SWT.SINGLE Text spans a single line

SWT.MULTI Text spans multiple lines

SWT.PASSWORD Hide text input via an echo character

SWT.READ_ONLY Text cannot be edited by the user

SWT.WRAP Text is wrapped if it does not fit in the control

SWT.LEFT Text is left aligned

SWT.CENTER Text is centered

SWT.RIGHT Text is right aligned

Note: Only one of the styles, SWT.SINGLE or SWT.MULTI, can be specified.
36 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

� SWT.Modify

This event is only reached after text has been entered by a user or programmatically
modified. A common use of SWT.Modify is to warn a user of invalid input. An example
within Eclipse would be when you try to create a package with a lowercase starting
character, Eclipse warns you that it is bad practice to have a lowercase starting character.

� SWT.Verify

This event is only reached before text has been entered by a user or programmatically
modified. A common use of SWT.Verify is to restrict a user’s input to a set of valid
characters. An example of this would be a text control which restricts the user to only input
numbers valid to a ZIP code.

Table 3-5 describes the text events.

Table 3-5 Text events

Snippets
Example 3-6 shows how to create a simple single line text widget for password input.

Example 3-6 Text: Prompt a user for their password

Text passwordText = new Text(composite, SWT.SINGLE | SWT.PASSWORD);

3.1.4 List
A list is used to represent a set of strings that can be used in a single or multi-select manner.

Example
Figure 3-4 shows a single-selection list with a few sample values.

Figure 3-4 A sample list

Styles
Table 3-6 describes list styles.

Table 3-6 List styles

Event Description

SWT.DefaultSelection The default selection event type

SWT.Modify Text has been modified

SWT.Verify Text needs to be validated

Style Description

SWT.SINGLE A list where only one item can be selected

SWT.MULTI A list where multiple items can be selected
Chapter 3. eSWT core 37

Events
Table 3-7 describes list events.

Table 3-7 List events

There are only two events found within List and both deal with selection. Example 3-7 prints
the user’s selection based on a double-click.

Example 3-7 Printing a user selection on a double click

List list = new List(composite, SWT.SINGLE);
list.add(“A”);
list.add(“B”);
list.addListener(SWT.DefaultSelection, new Listener() {

public void handleEvent(Event e) {
System.out.println(list.getSelection());

}
});

Snippets
Example 3-8 creates a list with a few inserted items and allows for vertical scrolling.

Example 3-8 List: Creating a new single-select list with a few items (vertical scrolling)

List list = new List(composite, SWT.SINGLE | SWT.V_SCROLL);
list.add(“Apples”);
list.add(“Oranges”);
list.add(“Bananas”);

3.1.5 Combo box
Figure 3-5 demonstrates a captioned control with a combo box. In this particular example, the
combo box is filled with values that represent various world languages.

Figure 3-5 A language selection utility using a combo box

Note: Only one feature, SWT.SINGLE or SWT.MULTI, can be specified at a time.

Event Description

SWT.DefaultSelection The user double clicked on an item

SWT.Selection The user selected an item
38 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Styles
Table 3-8 describes combo styles.

Table 3-8 Combo styles

Events
Table 3-9 describes combo events.

Table 3-9 Combo events

Snippets
Example 3-9 contains a small snippet of code that creates a read-only combo box and
populates the combo box with values.

Example 3-9 Combo: Create and populate a read-only combo

Combo combo = new Combo(composite, SWT.READ_ONLY);
combo.add(“Oranges”);
combo.add(“Apples”);
combo.add(“Bananas”);

3.1.6 Dialog window
A dialog window provides a way to prompt the user for some input with a degree of modality.
The dialog window is commonly used to report error messages or to ask simple questions
regarding actions to the user. It is also important to note that a dialog is not a widget and
therefore shares no common widget functionality. Dialog is an abstract superclass that is
shared by all dialog types.

Example
Figure 3-6 shows a special type of dialog: a message box with styles: SWT.YES | SWT.NO |
SWT.ICON_QUESTION.

Figure 3-6 A sample message box

Style Description

SWT.DROP_DOWN The list becomes a drop down

SWT.READ_ONLY The user cannot modify the list

Event Description

SWT.DefaultSelection The user pressed Enter

SWT.Modify The user selected an item

SWT.Selection The text has been modified
Chapter 3. eSWT core 39

Styles
Table 3-10 describes dialog styles.

Table 3-10 Dialog styles

Dialog types
There are several dialog implementations available to users within eSWT. They are each
discussed in detail within their respective sections. This chapter discusses eSWT core, so we
cover MessageBox and FileDialog. Table 3-11 lists all of the dialog implementations that are
available and where they reside within eSWT.

Table 3-11 Dialog types

Titles
All dialogs have the ability to contain a title string.

� setText(String title)

Sets the title of the dialog. If the title is not set, it is simply blank.

� getText()

Returns the title of the dialog.

Style Description

SWT.APPLICATION_MODAL Does not allow interaction with any window
except its direct secondary descendants

SWT.PRIMARY_MODAL Does not allow interaction with any ancestor
window

Note: Not every subclass of Dialog supports a modality style. If a modality style is not
supported, it is adjusted automatically to a more restrictive modality style.

Component Type Description

eSWT core MessageBox Informs a user of a message, sometimes
accompanied with a system beep.

eSWT core FileDialog Allows a user to navigate the file system and select
a file.

eSWT expanded ColorDialog Allows a user to select a color for usage.

eSWT expanded DirectoryDialog Allows a user to navigate the file system and select
a directory.

eSWT expanded FontDialog Allows a user to select a font for usage.

eSWT mobile QueryDialog A modal window that prompts the user for different
types of input: standard, numeric, password, time
and date.

eSWT mobile MultiPageDialog Allows an application to show multiple pages
(tabbed dialog) which are displayed one at a time.
It provides function similar to TabFolder in SWT.

eSWT mobile TimedMessageBox A dialog that closes automatically after a assigned
period of time.
40 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

3.1.7 MessageBox
Message boxes, to put it simply, provide a convenient way to display information or prompt a
user with a question.

Example
Figure 3-7 displays a error message box with styles: SWT.RETRY | SWT.CANCEL |
SWT.ICON_ERROR.

Figure 3-7 A sample error message box

Styles
Message boxes can include buttons and icons. These options are configured via style bits.
Table 3-12 describes MessageBox button styles.

Table 3-12 MessageBox buttons

Table 3-13 describes MessageBox icon styles.

Table 3-13 MessageBox icons

Style Description

SWT.OK A single OK button is displayed

SWT.OK | SWT.CANCEL An OK and cancel button are displayed

SWT.YES | SWT.NO A yes and no button are displayed

SWT.YES | SWT.NO | SWT.CANCEL A yes, no and cancel button are displayed

SWT.RETRY | SWT.CANCEL A retry and cancel button are displayed

Style Description

SWT.ICON_ERROR Inform the user of an error

SWT.ICON_INFORMATION Display a message to a user

SWT.ICON_QUESTION Display a question to a user

SWT.ICON_WARNING Inform the user of a warning

SWT.ICON_WORKING Inform the user that work is in progress
Chapter 3. eSWT core 41

Snippets
Example 3-10 illustrates how to display a warning message using a MessageBox.

Example 3-10 MessageBox: Display a warning

MessageBox warningBox = new MessageBox(shell, SWT.ICON_WARNING | SWT.OK);
warningBox.setText(“Warning”);
warningBox.setMessage(“I’m warning you...!”);
warningBox.open();

3.1.8 FileDialog
A file dialog allows a user to navigate the file system. Selecting a file or files performs an
action (save or open) on the selection.

Example
Figure 3-8 shows a sample file dialog with style SWT.OPEN.

Figure 3-8 An example file dialog

Styles
Table 3-14 describes FileDialog styles.

Table 3-14 FileDialog styles

Style Description

SWT.SAVE Used when a user needs to save a file

SWT.OPEN Used when a user needs to open a file

SWT.SINGLE Allows the selection of a single file only

SWT.MULTI Allows multiple file selections
42 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Filters
A special feature of FileDialog allows a user to filter paths and file extensions. For path
filtering, the following methods are available:

� setFilterPath(String path)

Sets the path that is displayed first to a user when opening a file dialog. If no path is set,
the operating system default is used.

� getFilterPath()

Returns the filter path.

A common use of path filtering allows some convenience to the user in deciding the best
location for the file to save or open. For example, a word processor on the Windows Mobile®
operating system would most likely set the filter path to the My Documents folder to save the
user time (Example 3-11).

Example 3-11 FileDialog: Filter the path so saves start in the My Documents folder

FileDialog dialog = new FileDialog(shell, SWT.SAVE);
dialog.setText(“Save”);
dialog.setFilterPath(“C:\My Documents”);
dialog.open();

For extension filtering, the following methods are available:

� setFilterExtensions(String[] extensions)

Sets the extensions to which filter items are displayed in the file dialog. If no extensions
are set, all files are matched.

� getFilterExtensions()

Returns the filter extensions.

An example of a filter extension would be to limit a user to only opening music files because
they are using a music player program (Example 3-12).

Example 3-12 FileDialog: Create a dialog and filter for music files only

FileDialog dialog = new FileDialog(shell, SWT.OPEN);
dialog.setText(“What do you want to hear?”);
dialog.setFilterExtensions(new String[] {“*.mp3,”*.wav”,”*.ogg”});
dialog.open();

Snippets
Example 3-13 illustrates how to create a dialog and filter for text files to open.

Example 3-13 FileDialog: Create a dialog and filter for text files to open

FileDialog dialog = new FileDialog(shell, SWT.OPEN);
dialog.setText(“Select the text file...”);
dialog.setFilterExtensions(new String[] {“Text Files (*.txt)”, “Rich Text Files (*.rtf)”});
dialog.open();
Chapter 3. eSWT core 43

3.1.9 Menu
Menus are one of the most common widgets found on desktop user interfaces. They allow for
a list of items to be displayed, giving a user the option to choose an item. It is recommended
that menus are used sparingly on mobile devices.

Example
Figure 3-9 shows a menu with a couple of sub-menu entries.

Figure 3-9 A sample menu with a couple of sub-menus.

Menu styles
Table 3-15 describes menu styles.

Table 3-15 Menu styles

Menu events
Table 3-16 describes menu events.

Table 3-16 Menu events

Important: The use of menus is discouraged because many mobile devices do not have
pointer devices. Furthermore, it is difficult for an application to determine exactly how many
top-level menu items can be displayed due to variable device displays. It is recommend
that you use Command for interactions.

Style Description

SWT.BAR Create a menu bar

SWT.DROP_DOWN Create a drop-down menu

SWT.POP_UP Create a pop-up menu

SWT.NO_RADIO_GROUP Removes radio button behavior

SWT.LEFT_TO_RIGHT Left-to-right menu orientation

SWT.RIGHT_TO_LEFT Right-to-left menu orientation

Event Description

SWT.Hide The menu is being hidden

SWT.Show The menu is being shown
44 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

MenuItem styles
Table 3-17 describes Menultem styles.

Table 3-17 MenuItem styles

MenuItem events
Table 3-18 describes Menultem events.

Table 3-18 MenuItem Events

Snippets
Example 3-14 illustrates how to create a pop-up menu.

Example 3-14 Menu: Create a pop-up menu

Menu menu = new Menu(shell, SWT.POP_UP);
MenuItem radioItem = new MenuItem(menu, SWT.RADIO);
radioItem.addText(“Radio”);
MenuItem checkItem = new MenuItem(menu, SWT.CHECK);
checkItem.addText(“Check”);

3.1.10 ScrollBar and Slider widgets
ScrollBar and Slider are widgets that allow a user to select a value between a minimum and
maximum. They are manipulated via keyboard keys or using the thumb. The big difference
between the two is that Slider widgets are controls, where as ScrollBar widgets are not. A
scroll bar usually appears to the right or bottom of a control. Both of the widgets have a single
selection that is considered to be its value, which is constrained based on a range of values
specified by a user.

Example
Figure 3-10 shows a sample slider.

Figure 3-10 A sample slider

Style Description

SWT.CHECK Creates a check button menu item

SWT.CASCADE Creates a cascade styled menu item

SWT.PUSH Creates a push button menu item

SWT.RADIO Creates a radio button menu item

SWT.SEPARATOR Creates a separator styled menu item

Event Description

SWT.Selection The menu item was selected
Chapter 3. eSWT core 45

Styles
Table 3-19 describes ScrollBar and Slider styles.

Table 3-19 ScrollBar and Slider styles

Events
Table 3-20 describes ScrollBar and Slider events.

Table 3-20 ScrollBar and Slider events

ScrollBar creation
Scroll bars are created by specifying the SWT.H_SCROLL and SWT.V_SCROLL styles to the parent
that is interested in receiving scroll bars. After the scroll bar is created, you can access it via
its parent using the following methods:

� getHorizontalBar()

Returns the horizontal scroll bar.

� getVerticalBar()

Returns the vertical scroll bar.

Ranges
ScrollBar and Slider have the ability to set range operations, particularly, minimum and
maximum integer values. The following methods are used to set the ranges.

� setMinimum(int minimum)

Sets the minimum value of the ScrollBar or Slider.

� getMinimum()

Returns the minimum value.

� setMaximum()

Sets the maximum value of the ScrollBar or Slider.

� getMaximum()

Returns the maximum value.

Increments
ScrollBar and Slider have the ability to set increment and page increment values. These are
the values that pertain to when a user moves the thumb. Typically, arrow keys increment the
scroll bar or slider and Page Up or Page Down keys page increment the scroll bar or slider.
The following methods are used to set the different types of increment values.

� setIncrement(int increment)

Sets the increment value. This value defaults to one (1) .

Style Description

SWT.HORIZONTAL Creates a horizontal scroll bar or slider

SWT.VERTICAL Creates a vertical scroll bar or slider

Event Description

SWT.Selection The widget was selected
46 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

� getIncrement()

Returns the increment value.

� setPageIncrement()

Sets the page increment value. This value defaults to one (1) .

� getPageIncrement()

Returns the page increment value.

3.1.11 ProgressBar
Progress bars are responsible for indicating the progress of operations to users. Progress
bars are considered non-selectable controls within eSWT. Therefore, no event is fired with
progress bars.

Example
Figure 3-11 shows a partially completed progress bar on the Pocket PC platform.

Figure 3-11 A sample progress bar

Styles
Table 3-21 describes ProgressBar styles.

Table 3-21 ProgressBar styles

Ranges
Progress bars provide the following range operations:

� setMinimum(int minimum)

Sets the minimum value.

� getMinimum()

Returns the minimum value. This value defaults to one (1) if nothing is set.

� setMaximum(int maximum)

Sets the maximum value.

� getMaximum()

Returns the maximum value. This value defaults to 100 if nothing is set.

Style Description

SWT.SMOOTH Fills the progress bar whole, instead of segmenting the progress.

SWT.HORIZONTAL Create a horizontal progress bar.

SWT.VERTICAL Create a vertical progress bar.

SWT.INDETERMINATE Create a progress bar that has runs on indeterminate operations and is
animated accordingly.
Chapter 3. eSWT core 47

Snippets
Example 3-15 creates an indeterminate progress bar.

Example 3-15 ProgressBar: Create an indeterminate progress bar

final ProgressBar bar = new ProgressBar(shell, SWT.INDETERMINATE);
new Thread() {

public void run() {
try {Thread.sleep(60000);} catch (Throwable t) {} // sleep for 60 seconds
bar.setSelection(bar.getMaximum());

}
}.start();

3.2 Layouts
Layouts are used to arrange controls. This section provides details to design an interface for
data input using a form.

3.2.1 FormLayout
FormLayout is a flexible layout that is highly recommended for usage in mobile devices
because the position and size of the components only depend on a single control. FormLayout
is highly resilient to the varied nature of mobile device screen sizes.

Table 3-22 lists the properties to aid in layout for FormLayout.

Table 3-22 FormLayout properties

Example 3-16 illustrates how to create a simple FormLayout.

Example 3-16 FormLayout: Creating a simple FormLayout

FormLayout layout = new FormLayout();
layout.marginWidth = 5;
layout.marginHeight = 5;
layout.spacing = 2;
shell.setLayout(layout);

Property Description

marginBottom The space in pixels to be used as a bottom margin

marginHeight The space in pixels to be used as a margin at the top and bottom of
controls

marginLeft The space in pixels to be used as a left margin

marginRight The space in pixels to be used as a right margin

marginTop The space in pixels to be used as a top margin

marginWidth The space in pixels to be used as a margin between the left and right of
controls

spacing The amount of spacing in pixels between controls
48 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

FormData
FormLayout uses FormData to set the different layout properties on a widget (Table 3-23).
Inside of each FormData resides a FormAttachment that describes the edges of a widget.

Table 3-23 FormData Layout properties

FormAttachment
FormAttachment describes the layout of the control. Table 3-24 lists the properties that are
associated with FormAttachment.

Table 3-24 FormAttachment properties

To use attachments, we need to create a FormData instance and set the properties directly.
Example 3-17 creates two buttons and attaches them to each other with some spacing.

Example 3-17 Creating buttons with attachment

FormLayout layout = new FormLayout();
layout.spacing = 3;
shell.setLayout(layout);

Button firstButton = new Button(shell, SWT.PUSH);
firstButton.setText(“First”);
Button secondButton = new Button(shell, SWT.PUSH);
secondButton.setText(“Second”);

FormData data = new FormData();
data.left = new FormAttatchment(firstButton);
secondButton.setLayoutData(data);

Property Description

width Specifies the width of the control

height Specifies the height of the control

top Specifies the form attachment that resides on the top edge control

bottom Specifies the form attachment that resides on the bottom edge control

left Specifies the form attachment that resides on the left edge control

right Specifies the form attachment that resides on the right edge control

Property Description

alignment Specifies the alignment of the control to which this edge is attached

control Specifies the control to which this edge is attached

denominator Specifies the denominator that describes where the edge will be placed

numerator Specifies the numerator that describes where the edge will be placed

offset Specifies the offset in pixels that is added to the edge
Chapter 3. eSWT core 49

50 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Chapter 4. eSWT mobile extensions

This chapter provides a detailed description of the following components found within
embedded Standard Widget Toolkit (eSWT) mobile extensions:

� Controls

– CaptionedControl
– ConstrainedText
– HyperLink
– DateEditor
– ListBox
– ListView
– MobileShell
– SortedList
– TextExtension

� Widgets

– TaskTip

� Dialogs

– MultiPageDialog
– TimedMessageBox

� Items

– Command

� Device-related

– MobileDevice
– Screen
– Input

4

© Copyright IBM Corp. 2006. All rights reserved. 51

4.1 Controls
Controls are the basic building blocks in eSWT application programs. This section describes
controls that are provided by the eSWT mobile extensions.

4.1.1 CaptionedControl
A CaptionedControl is used to display a label (caption) in front of a control. You can use
optional trailing text after the control, for example to indicate units of measurement.

Example
Figure 4-1 shows an example of CaptionedControl text. In this case, Name: is the text of
CaptionedControl, John Marshall is the embedded Text widget that is contained in
CaptionedControl, and Software Engineer is the training text. When CaptionedControl gets
focus, text and training text is highlighted to express focus effect.

Figure 4-1 CaptionedControl example

Styles
Table 4-1 shows the styles for CaptionedControl.

Table 4-1 CaptionedControl styles

Text, trailing text, and image
CaptionedControl provides the following methods to set text, trailing text, and image:

� setText(java.lang.String string)

Sets the caption label.

� getText()

Gets the caption text, which is an empty string if it has never been set.

� setTrailingText(java.lang.String string)

Sets the trailing label.

� getTrailingText()

Gets the trailing text, which is an empty string if it has never been set.

Tip: Determining which control has focus can be difficult on mobile devices where lighting
conditions are often less than optimal. With CaptionedControl, a label shows focus
highlighting whenever the control has focus. With an entire label highlighted, it is easy to
locate the focus.

Styles Description

SWT.LEFT_TO_RIGHT Default style for CaptionedControl, elements inside
CaptionedControl are aligned from left to right

SWT.RIGHT_TO_LEFT Elements inside CaptionedControl are aligned from right to left
52 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

� setImage(Image image)

Sets the image as an icon to the CaptionedControl.

� getImage()

Returns the CaptionedControl icon image or null if it has never been set.

Snippets
Example 4-1 is the code snippet for the CaptionedControl sample that is shown in Figure 4-1.

Example 4-1 CaptionedControl snippet

CaptionedControl captionedControl = new CaptionedControl(shell, SWT.LEFT_TO_RIGHT);
captionedControl.setText("Name: ");
Text text = new Text(captionedControl, SWT.SINGLE);
text.setText("John Marshall");
captionedControl.setTrailingText("Software Engineer");

4.1.2 ConstrainedText
ConstrainedText is a single-line Text control that constrains the user input by styles. This
control limits the characters that users can enter by styles to make data entry more efficient.
This capability is usually implemented by the underlying platform. The application is not
allowed to change or override the constraints. An IllegalArgumentException is thrown if
illegal content is set by applications programmatically.

Example
Figure 4-2 shows a ConstrainedText control with ConstrainedText.PHONENUMBER style for a
user to input a phone number only.

Figure 4-2 ConstrainedText example

Styles
ConstrainedText is similar to Text in that almost all styles that are used in Text can also be
used in ConstrainedText, except for SWT.MULTI. Because ConstrainedText only supports
single line input, SWT.MULTI takes no effect if it is set in an application.

Table 4-2 lists the ConstrainedText styles.

Table 4-2 ConstrainedText styles

Tip: ConstrainedText is a convenient widget that sets the initial input mode of a text field
and also limits the characters than can be entered within the field.

Style Description

DECIMAL Allows the input of numeric values with optional decimal fractions (for
example, -123, 0.123, or .5 are all valid input)

NUMERIC Allows the input of numeric values

PHONENUMBER Allows the input of numeric values with optional phone specific characters
such as a plus sign (+), an asterisk (*), and a number sign (#)
Chapter 4. eSWT mobile extensions 53

Events
Similar to Text, ConstrainedText has two events: SelectionEvent and ModifyEvent. These
events can be accessed via following methods:

� addSelectionListener(SelectionListener listener)

Adds the listener to the collection of listeners who are notified when the control is selected
by sending it one of the messages that are defined in the SelectionListener interface.

� removeSelectionListener(SelectionListener listener)

Removes the listener from the collection of listeners who are notified when the control is
selected.

� addModifyListener(ModifyListener listener)

Adds the listener to the collection of listeners who are notified when the ConstrainedText's
text is modified, by sending it one of the messages that are defined in the ModifyListener
interface.

� removeModifyListener(ModifyListener listener)

Removes the listener from the collection of listeners who are notified when the
ConstrainedText's text is modified.

Snippets
Example 4-2 is code snippet for CaptionedControl sample that is shown in Figure 4-2 on
page 53.

Example 4-2 CaptionedControl snippet

ConstrainedText cT = new ConstrainedText(shell, SWT.BORDER, ConstrainedText.PHONENUMBER);
cT.setSize(150,25);

4.1.3 HyperLink
Instances of this class represent a selectable user interface object that launches other
applications when activated by the user. This class represents several types of hyperlinks
associated with certain functionalities. The user can activate the associated program
determined by the style.

A HyperLink instance accepts general characters as other controls do, but the appearance is
dependent upon implementation and locale. For example, a HyperLink object with the PHONE
style might display as follows:

(416) 123-4567

However, the actual content of the object is visible to the application through the API. For
example getText() can be the string 4161234567.

Example
Figure 4-3 shows a HyperLink with EMAIL style.

Figure 4-3 HyperLink example

Note: Support of the native program is platform dependent. Not all platforms can have
corresponding platform function. For example, PDAs might not have a built-in phone.
54 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

When a user selects the hyperlink, HyperLink control brings up the operating system default
e-mail client with the e-mail address set as the receiver. Figure 4-4 shows the result on a
Pocket PC. It behaves similar to a hyperlink in HTML.

Figure 4-4 E-mail client brought up by HyperLink

Styles
Table 4-3 shows the format styles that are used in HyperLink.

Table 4-3 HyperLink format style

Snippets
Example 4-3 is code snippet for CaptionedControl sample that is shown in Figure 4-5. Note
that this example uses the PHONE format style and sets the text to 9191257328. The HyperLink
class reformats the appearance so that it is more meaningful to the user.

Example 4-3 HyperLink snippet

HyperLink hyperLink = new HyperLink(shell, SWT.NONE, HyperLink.PHONE);
hyperLink.setText("9191257328");

Figure 4-5 PHONE style HyperLink

Style Description

EMAIL Opens the implementation-dependent e-mail client when activated

PHONE Shows the implementation-dependent dialer interface when activated

URL Launches a implementation-dependent Web browser when activated
Chapter 4. eSWT mobile extensions 55

4.1.4 DateEditor
DateEditor is a special data entry control that allows users to enter or choose a date. The
return value of getDate() is an instance of a Date class.

The default locale and time zone for the date and time formatting reflects the current
configuration in the device. The default date that is used if a date is not set is the current date.
Applications might call setTimeZone(timeZone) to change the differential that is added to UTC
time. This change only affects the widget instance and does not affect other applications.

Example
Figure 4-6 shows a DateEditor with DATE style.

Figure 4-6 DateEditor example

Styles
Table 4-4 shows the DateEditor styles.

Table 4-4 DateEditor style

Note: COMPACT and FULL are hints that might not take effect on some embedded devices
(for example, Pocket PC).

Style Description

COMPACT A hint that the widget should be displayed in a format which is smaller or less full
featured

DATE A date entry type for year, month and day

DATE_TIME An entry type for date and time

DURATION An entry type for a period of time in hours, minutes and seconds

FULL A hint that the widget should be displayed in a format which is full featured and
emphasizes ease of use rather than compactness

OFFSET An entry type for a period of time in hours, minutes, and seconds which can be
subtracted or added to another time value

TIME A time entry type for hours, minutes and seconds
56 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Events
DateEditor has two events: SelectionEvent and ModifyEvent. You can access these events
can via the following methods:

� addSelectionListener(SelectionListener listener)

Adds the listener to the collection of listeners who are notified when the control is selected
by sending it one of the messages that are defined in the SelectionListener interface.

� removeSelectionListener(SelectionListener listener)

Removes the listener from the collection of listeners who are notified when the control is
selected.

� addModifyListener(ModifyListener listener)

Adds the listener to the collection of listeners who are notified when DateEditor text is
modified by sending one of the messages that are defined in the ModifyListener
interface.

� removeModifyListener(ModifyListener listener)

Removes the listener from the collection of listeners who are notified when DateEditor
text is modified.

Date and Time
eSWT provides the following methods to perform set and retrieval operation on DateEditor:

� setDate(java.util.Date date)

Sets the date for the editor when TIME or DATE_TIME styles are used.

� getDate()

Returns the date when DATE or DATE_TIME styles are used.

� setTime(int seconds)

Sets the time for the editor when TIME, OFFSET, or DURATION styles are used.

� getTime()

Returns the number of seconds when TIME, OFFSET, or DURATION styles are used.

� setTimeZone(java.util.TimeZone timeZone)

Defines the time zone, which is applied on the DateEditor (UTC time).

Snippets
Example 4-4 is code snippet for the CaptionedControl sample that is shown in Figure 4-7 on
page 58. The first is DATE style, which shows the current date if the application does not set
the date. The second is TIME style, which shows current time if the application does not set
the time. The third is DURATION style, which takes seconds as the argument in setTime() and
displays the format of the time in hour/minutes/seconds.

Example 4-4 DateEditor snippet

DateEditor dateEditor1 = new DateEditor(shell, SWT.NONE, DateEditor.DATE);
DateEditor dateEditor2 = new DateEditor(shell, SWT.NONE, DateEditor.TIME);
DateEditor dateEditor3 = new DateEditor(shell, SWT.NONE, DateEditor.DURATION);
dateEditor3.setTime(1000);
Chapter 4. eSWT mobile extensions 57

Figure 4-7 DateEditor snippet result

4.1.5 ListBox
Instances of the ListBox class represent a selectable user interface object that displays a list
of items consisting of text and icons from a data model. Each list item can include
combinations of heading text, heading icons, detail text, and detail icons. The layout and
display of the various text and icons is variable, depending upon the style and modifier
constants that are passed to the constructor.

Only one LB_STYLE_xxxx layout style constant can be specified. The
LB_STYLE_NO_HEADING_TEXT style displays detail text on a single line per item. The
LB_STYLE_1LINE_ITEM style displays heading text next to detail text in a single row. The
LB_STYLE_2LINE_ITEM style displays heading text above detail text in a two line cell.

ListBox is a model-view-control (MVC) style widget that displays a list of items in the most
efficient or useful way for a given platform.

Example
Figure 4-8 shows a ListBox example.

Figure 4-8 ListBox example

Styles
Table 4-5 shows several styles that are used in ListBox. You can specify only one.

Table 4-5 ListBox styles

Style Description

LB_MOD_SHOW_DETAIL_ICONS Shows icons that are associated with detail text

LB_MOD_SHOW_HEADING_ICONS Shows icon that are associated with heading text

LB_MOD_SHOW_SELECTION_NUMBER Shows a single digit number that is aligned with
each item that can be used to select the item

LB_STYLE_1LINE_ITEM A single-line item, 2 columns

LB_STYLE_2LINE_ITEM A double-line item, 1 column with heading and detail
combined

LB_STYLE_NO_HEADING_TEXT A single-line item, 1 column (default)
58 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Events
DateEditor has one event, SelectionEvent, which can be accessed via the following
methods:

� addSelectionListener(SelectionListener listener)

Adds the listener to the collection of listeners who are notified when the control is selected
by sending it one of the messages that are defined in the SelectionListener interface.

� removeSelectionListener(SelectionListener listener)

Removes the listener from the collection of listeners who are notified when the control is
selected.

ListBoxItem
Unlike List, data that is contained in ListBox comes from a array of ListBoxItem rather than
adding or inserting one by one, so as to provide an MVC model. Instances of ListBoxItem
represent an item in a ListBox widget. Heading and detail icons, if provided, are displayed at
the size provided or stretched to fit the ListBox styles. For consistency, all heading icons
should be the same size and all detail icons should be the same size for any one list.
Elements of a ListBoxItem which are null are not displayed in the ListBox layout.

The following methods are provided to set or to get attributes within an instance of ListBox:

� setDetailIcons(Image[] icons)

Sets the detail icons of the item.

� getDetailIcons()

Gets the detail icons of the item.

� setDetailText(java.lang.String detailText)

Sets the detail text of the item.

� getDetailText()

Gets the detail text of the item.

� setHeadingIcons(Image[] icons)

Sets the heading icons for this item.

� getHeadingIcons()

Gets the heading icons for this item.

� setHeadingText(java.lang.String headingText)

Sets the heading text of the item.

� getHeadingText()

Gets the heading text of the item.

Set data model and selection
This section describes the Set data model and selection methods.

Set data model
To update the content that is contained in ListBox, we need to create an array of
ListBoxItem, set the content properly. We then need to call setDataModel() to set the content
within ListBox using the setDataModel(ListBoxItem[] items) method. This method
establishes the data model for this ListBox. The provided array is used for the life of the
ListBox or until a new data model is set. Elements of a ListBoxItem which are null or
disposed are not displayed, leaving a blank area within the layout.
Chapter 4. eSWT mobile extensions 59

When applications make changes to ListBox array, ListBox does not take visual change
immediately. So, applications need to refresh the ListBox explicitly using the following
methods:

� public void refreshItem(int index)

Notifies this ListBox that the data for the item at the given index has been updated and the
item display needs to be refreshed.

� refreshList()

Notifies this ListBox that multiple items might have been updated and the entire list
display needs to be refreshed.

Selection
ListBox provides several ways to set selection, almost all of which are index-based. The
following methods are provided to set or to get selection:

� setSelection(int index)

Selects the item at the given zero-relative index in the ListBox.

� setSelection(int[] indices)

Selects the items at the given zero-relative indices in the ListBox.

� setSelection(int start, int end)

Selects the items in the range specified by the given zero-relative indices in the ListBox.

� getSelectionCount()

Returns the number of items currently selected.

� getSelectionIndices()

Returns the zero-relative indices of the items which are currently selected in the ListBox.

ListBox also provides several methods to perform deselecting or selecting items:

� deselect(int index)

Deselects the item at the given zero-relative index in the ListBox.

� deselect(int[] indices)

Deselects the items at the given zero-relative indices in the ListBox.

� deselect(int start, int end)

Deselects the items at the given zero-relative indices in the ListBox.

� deselectAll()

Deselects all selected items in the ListBox.

� select(int index)

Selects the item at the given zero-relative index in the ListBox's list.

� void select(int[] indices)

Selects the items at the given zero-relative indices in the ListBox.

� void select(int start, int end)

Selects the items in the range specified by the given zero-relative indices in the ListBox.

� void selectAll()

Selects all of the items in the ListBox.
60 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Snippets
Example 4-5 creates a array of styles and then uses the array to create different ListBox with
the same data model.

Example 4-5 ListBox snippet

// Different styles for use in creation of ListBox
int[] modes={

ListBox.LB_STYLE_2LINE_ITEM | ListBox.LB_MOD_SHOW_HEADING_ICONS |
ListBox.LB_MOD_SHOW_DETAIL_ICONS,

ListBox.LB_STYLE_1LINE_ITEM | ListBox.LB_MOD_SHOW_HEADING_ICONS |
ListBox.LB_MOD_SHOW_DETAIL_ICONS,

ListBox.LB_STYLE_1LINE_ITEM | ListBox.LB_MOD_SHOW_HEADING_ICONS |
ListBox.LB_MOD_SHOW_DETAIL_ICONS | ListBox.LB_MOD_SHOW_SELECTION_NUMBER,

ListBox.LB_STYLE_1LINE_ITEM | ListBox.LB_MOD_SHOW_DETAIL_ICONS |
ListBox.LB_MOD_SHOW_SELECTION_NUMBER,

ListBox.LB_STYLE_NO_HEADING_TEXT|ListBox.LB_MOD_SHOW_DETAIL_ICONS,
ListBox.LB_STYLE_NO_HEADING_TEXT
};

// Create the data modal
private void createListBoxItems() {

listboxitems = new ListBoxItem[3];

// Get images
lb1details = new Image(getComposite().getDisplay(),

getClass().getResourceAsStream("/res/lb1details.png"));
lb1heading = new Image(getComposite().getDisplay(),

getClass().getResourceAsStream("/res/lb1heading.png"));
lb2details = new Image(getComposite().getDisplay(),

getClass().getResourceAsStream("/res/lb2details.png"));
lb2heading = new Image(getComposite().getDisplay(),

getClass().getResourceAsStream("/res/lb2heading.png"));
lb3details = new Image(getComposite().getDisplay(),

getClass().getResourceAsStream("/res/lb3details.png"));
lb3heading = new Image(getComposite().getDisplay(),

getClass().getResourceAsStream("/res/lb3heading.png"));

// create the ListboxItems
listboxitems[0] = new ListBoxItem("12 Dec 2003 - 10:02",lb1details,"Island",lb1heading);
listboxitems[1] = new ListBoxItem("23 Jun 2004 - 23:05",lb2details,"Night",lb2heading);
listboxitems[2] = new ListBoxItem("16 Feb 2004 -

11:23",lb3details,"Mountain",lb3heading);
}

//Then we call creation of ListBox several times with different styles to see different
visual effect

ListBox[] listbox = new ListBox[6];

for (int i=0; i<6; i++) {
// create a new Listbox
listbox[i] = new ListBox(getComposite(), SWT.SINGLE, modes[i]);
// add the ListBoxItems to the ListBox
listbox[i].setDataModel(listboxitems);

}

Chapter 4. eSWT mobile extensions 61

Figure 4-9 shows ListBox created with the following:

ListBox.LB_STYLE_2LINE_ITEM | ListBox.LB_MOD_SHOW_HEADING_ICONS |
ListBox.LB_MOD_SHOW_DETAIL_ICONS:

Figure 4-9 ListBox snippet 1

Figure 4-10 shows ListBox created with the following:

ListBox.LB_STYLE_1LINE_ITEM | ListBox.LB_MOD_SHOW_HEADING_ICONS |
ListBox.LB_MOD_SHOW_DETAIL_ICONS:

Figure 4-10 ListBox snippet 2

Figure 4-11 shows ListBox created with the following:

ListBox.LB_STYLE_1LINE_ITEM | ListBox.LB_MOD_SHOW_HEADING_ICONS |
ListBox.LB_MOD_SHOW_DETAIL_ICONS | ListBox.LB_MOD_SHOW_SELECTION_NUMBER:

Figure 4-11 ListBox snippet 3
62 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Figure 4-12 shows ListBox created with the following:

ListBox.LB_STYLE_1LINE_ITEM | ListBox.LB_MOD_SHOW_DETAIL_ICONS |
ListBox.LB_MOD_SHOW_SELECTION_NUMBER:

Figure 4-12 ListBox snippet 4

Figure 4-13 shows ListBox created with the following:

ListBox.LB_STYLE_NO_HEADING_TEXT|ListBox.LB_MOD_SHOW_DETAIL_ICONS:

Figure 4-13 ListBox snippet 5

Figure 4-14 shows ListBox created with the following:

ListBox.LB_STYLE_NO_HEADING_TEXT:

Figure 4-14 ListBox snippet 6
Chapter 4. eSWT mobile extensions 63

4.1.6 ListView
ListView allows users to select one or more items from a collection of items that can be
displayed in multi-columns with different styles. ListView is similar to List, but it allows icon
support in each item.

ListView lays out its children items in one or more columns from top to bottom. If a layout
orientation hint is not specified, the implementation chooses the orientation. If there is only
enough screen width for one column, the list scrolls vertically. If there is room to display
multiple columns within the widget, then the list scrolls horizontally. The list never scrolls in
more than one direction. You can set the layout orientation at runtime by calling the
setLayout(int) method.

The item density hint determines the size and positioning of items in order to fit more or less
within the widget. Applications can query the preferred sizes of the icons for each density
level. Note that the sizes can be diverse in different platforms. When the given icons do not
match the preferred size, the implementation might adjust icon sizes without throwing any
exception. Applications can change the item density level at runtime by calling the
setLayoutDensity(int) method. Some platforms might use context-sensitive device keys to
allow the user to change the ListView density level at runtime (for example, by activating
zoom in or zoom out device keys when the ListView is focused).

Example
Figure 4-15 shows a ListView example.

Figure 4-15 ListView example

Styles
ListView has two style variables in its constructor. One is a SWT style and another is a
ListView density style.

Table 4-6 shows the SWT styles, and Table 4-7 shows the density styles.

SWT.SINGLE and SWT.MULTI are used exclusively. The same limitation applies to SWT.VERTICAL
and SWT.HORIZONTAL. However, you can use SWT.SINGLE | SWT.VERTICAL to create a single
selection, vertical layout ListView.

Table 4-6 SWT styles

Style Description

SWT.SINGLE Single selection

SWT.MULTI Multiple selection
64 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Table 4-7 Density styles

Events
ListView has one event, SelectionEvent, which can be accessed via the following methods:

� addSelectionListener(SelectionListener listener)

Adds the listener to the collection of listeners who are notified when the control is selected
by sending it one of the messages that are defined in the SelectionListener interface.

� removeSelectionListener(SelectionListener listener)

Removes the listener from the collection of listeners who are notified when the control is
selected.

Setting, adding, and removing items
The methods that are provided to set, add, and remove items in ListView are very similar to
those in List. In addition, you can add icons for adding and setting ListView items.

Setting Items
Items inside ListView can be initialized with setting methods. ListView provides the following
methods to get and to set items:

� setItem(int index, java.lang.String string, Image icon)

Sets the text and icon of the item in the ListView list at the given zero-relative index to the
string argument.

� setItems(java.lang.String[] items, Image[] icons)

Sets the ListView items to be the given array of items and icons.

� getItem(int index)

Returns the item at the given, zero-relative index in the ListView.

� getItems()

Returns an array of String s which are the items in the ListView.

� getItemCount()

Returns the number of items contained in the ListView.

Style Description

ListView.LOW Low density

ListView.MEDIUM Medium density

ListView.HIGH High density

Note: Density is defined as a hint to be used. Not all platforms can support all three types
of density. For example, Pocket PC supports only LOW and MEDIUM. Thus, with Pocket PC,
HIGH has no visual difference with MEDIUM.
Chapter 4. eSWT mobile extensions 65

Add Items
You can also add items into ListView by adding methods, ListView provides the following
methods to perform the add operation:

� add(java.lang.String item, Image icon)

Adds the string item and an optional icon to the end of the ListView list.

� add(java.lang.String string, Image icon, int index)

Adds the string item and an optional icon to the ListView list at the given zero-relative
index.

Removing Items
For removing items, ListView provides the following methods:

� remove(int index)

Removes the item from the ListView at the given zero-relative index.

� remove(int[] indices)

Removes the items from the ListView at the given zero-relative indices.

� remove(int start, int end)

Removes the items from the ListView that are between the given zero-relative start and
end indices (inclusive).

� remove(java.lang.String string)

Searches the ListView list, starting at the first item, until an item is found that is equal to
the argument and removes that item from the list.

� removeAll()

Removes all of the items from the ListView.

Selection
ListView provides several ways to set selection, almost all of which are index-based. The
following methods are provided to set or to get selection:

� setSelection(int index)

Selects the item at the given zero-relative index in the ListView.

� setSelection(int[] indices)

Selects the items at the given zero-relative indices in the ListView.

� setSelection(int start, int end)

Selects the items in the range that is specified by the given zero-relative indices in the
ListView.

� getSelectionCount()

Returns the number of items currently selected.

� getSelectionIndices()

Returns the zero-relative indices of the items which are currently selected in the ListView.
66 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

ListView also provides several methods to perform deselecting or selecting items:

� deselect(int index)

Deselects the item at the given zero-relative index in the ListView.

� deselect(int[] indices)

Deselects the items at the given zero-relative indices in the ListView.

� deselect(int start, int end)

Deselects the items at the given zero-relative indices in the ListView.

� deselectAll()

Deselects all selected items in the ListView.

� select(int index)

Selects the item at the given zero-relative index in the ListView's list.

� void select(int[] indices)

Selects the items at the given zero-relative indices in the ListView.

� void select(int start, int end)

Selects the items in the range specified by the given zero-relative indices in the ListView.

� void selectAll()

Selects all of the items in the ListView.

Snippets
Example 4-6 creates a ListView that contains 20 items, all of which are added with icons. It
also creates two Commands for the user to change the density of ListView.

Example 4-6 ListView example

final ListView lv = new ListView(shell, SWT.MULTI, ListView.HIGH);

//set Image array
Image[] image = new Image[4];
image[0] = new Image(Display.getDefault(), "/eSWT/childs.jpg");
image[1] = new Image(Display.getDefault(), "/eSWT/lotus.png");
image[2] = new Image(Display.getDefault(), "/eSWT/osaka_2.jpg");
image[3] = new Image(Display.getDefault(), "/eSWT/pgz_2.png");
lv.setSize(200,250);

//Create a Command for setting low density
Command lowCommand = new Command(lv, Command.SELECT, 0);
lowCommand.setText("LOW");
lowCommand.addSelectionListener(new SelectionListener(){

public void widgetSelected(SelectionEvent e) {
lv.setLayoutDensity(ListView.LOW);

}
public void widgetDefaultSelected(SelectionEvent e) {
}});

//Create a Command for setting high density
Command midCommand = new Command(lv, Command.SELECT, 0);
midCommand.setText("MEDIUM");
midCommand.addSelectionListener(new SelectionListener(){

public void widgetSelected(SelectionEvent e) {
lv.setLayoutDensity(ListView.MEDIUM);

}

Chapter 4. eSWT mobile extensions 67

public void widgetDefaultSelected(SelectionEvent e) {
}});

//add ListView items
for (int i=0; i<20; i++) {

lv.add("item"+i, image[i % 4]);
}

Figure 4-16 shows the result of LOW density.

Figure 4-16 LOW density

Figure 4-17 is HIGH density.

Figure 4-17 HIGH density

4.1.7 MobileShell
MobileShell is a shell that is particularly suitable for devices that require dynamic change of
trims at runtime. It is a top-level window that is usually visible and managed by the user or a
window manager. Two unique features of MobileShell over a normal Shell are a new
changeTrim(int, int) method to change Shell trim styles dynamically and full-screen mode.
68 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

MobileShell uses the entire available application space in the normal mode. In this mode, a
little screen area (title bar) is often reserved to display text with or without an icon and optional
trim information. The text shows the application name text by default. (See setText(String)
to change the text value and setImage(Image) to set the icon.)

Outside the application screen space, mobile devices often reserve a screen space, named
status area, for displaying some extra information regarding the device and other useful data.
Such reserved space is usually accessible and programmable. MobileShell provides a
setStatus(String) method to display text on the status area. The implementation decides
how to process the string (for example, if the content is too long to display).

Unlike a normal shell, MobileShell supports a special screen mode to use the entire device
screen space instead of the application space in the normal mode. Applications can call a
setFullScreenMode(boolean) method to switch between normal and full-screen modes at
runtime. This feature is often used in applications such as media players and Web browsers
where requests for full-screen mode rendering better effects.

MobileShell can also be used to poll for key state as commonly done within game execution
loops.

Example
Figure 4-18 is a full-screen MobileShell, no title bar or task bar is displayed. Full-screen
display is useful in mobile devices when the application needs to display more information to
the user.

Figure 4-18 Full-screen MobileShell
Chapter 4. eSWT mobile extensions 69

Styles
MobileShell has two kind of styles. Table 4-8 shows the trim styles, and Table 4-9 shows
status styles.

Table 4-8 Trim styles

Table 4-9 Status styles

Trim and status
MobileShell provides the following methods to change the trim or status bar. These methods
are device specific and not all platforms are able to support them. For example, Pocket PC
cannot change the trim of MobileShell during runtime, and it has no status bar. The methods
provided are:

� changeTrim(int style, int statusStyle)

Changes the window trim mode. The implementation decides how to re-layout the content
if the style changes.

� getStatusText()

Returns the status text.

� setStatusText(java.lang.String statusText)

Sets the status text. The change takes effect immediately.

FullScreenMode and KeyState
MobileShell has full-screen support and can keep key state for querying. The following
methods are available:

� setFullScreenMode(boolean mode)

Sets the screen mode. This method controls whether the shell is in normal or full-screen
mode. If set to true, the shell switches to full-screen state. If set to false and the shell was
in full-screen state, the shell switches back to the normal state.

� getFullScreenMode()

Gets the full-screen state. Returns true if in full screen mode; false otherwise.

Styles Description

SHELL_TRIM Shell trim

DIALOG_TRIM Dialog trim

NO_TRIM No trim

TITLE Title trim

CLOSE Shell with close box

BORDER Shell with border

Styles Description

NO_STATUS_PANE Hint to show no status pane

SMALL_STATUS_PANE Hint to show small status pane with shell

LARGE_STATUS_PANE Hint show large status pane with shell
70 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

� getKeyState(int keyCode)

Reports whether the key has been pressed. A return value of true indicates the key is
pressed or has been pressed since the state of this key was last checked. A return value
of false indicates the key has not been pressed since the state of this key was last
checked. Only the active Shell can return true for this method. Calling this method on a
Shell that is not the currently active always returns false and does not clear the key's
has-been-pressed state.

Snippets
Example 4-7 creates an instance of MobileShell and sets it to be full-screen mode.

Example 4-7 MobileShell snippet

MobileShell mobileShell = new MobileShell(display, SWT.SHELL_TRIM, LARGE_STATUS_PANE);
mobileShell.setFullScreenMode(true);

4.1.8 SortedList
SortedList represents a selectable user interface object that displays a sorted list of text
items. The items might be displayed in ascending or descending order. The sorting algorithm
is platform and locale dependent.

If the FILTER style is specified during construction, an associated label is also displayed that
shows characters that are entered. These characters are then used to filter the list to show
fewer items. The selection state of items filtered out of the list is cleared.

Example
Figure 4-19 shows an instance of SortedList with FILTER style.

Figure 4-19 SortedList example
Chapter 4. eSWT mobile extensions 71

Styles
Table 4-10 shows the styles that SortedList supports.

Table 4-10 SortedList styles

Events
SortedList has one event, SelectionEvent, which can be accessed via following methods:

� addSelectionListener(SelectionListener listener)

Adds the listener to the collection of listeners who are notified when the control is selected
by sending it one of the messages that are defined in the SelectionListener interface.

� removeSelectionListener(SelectionListener listener)

Removes the listener from the collection of listeners who are notified when the control is
selected.

Setting, adding, and removing items
This section describes the methods to set, add, and remove items.

Setting items
Items inside SortedList can be initialized using the setItems(java.lang.String[] items)
method. This method sets the SortedList items to be the given array of items.

Adding items
Items can also be added into SortedList using the add(java.lang.String item) method.
This method adds the string item to the end of the SortedList list.

Removing items
For removing items, SortedList provides the following methods:

� remove(java.lang.String string)

Searches the SortedList list, starting at the first item, until an item is found that is equal to
the argument and removes that item from the list.

� removeAll()

Removes all of the items from the SortedList.

Style Description

SWT.SINGLE Single selection

SWT.MULTI Multiple selection

SWT.UP Sorted so that numbers go from low to high when the list is examined from top
to bottom

SWT.DOWN Sorted so that numbers go from high to low when examined from top to bottom

Note: You can specify only one of SINGLE and MULTI. Only one of UP and DOWN can be
specified.
72 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Selection
SortedList provides several ways to set selection, almost all of which are index-based. The
following methods are provided to set or to get selection:

� setSelection(java.lang.String[] items)

Sets the SortedList selection to be the given array of items.

� getSelection()

Returns an array of strings of items that are currently selected in the SortedList.

� getSelectionCount()

Returns the number of items currently selected.

Snippets
Example 4-8 creates a SortedList instance with SortedList.FILTER style and adds nine
items.

Example 4-8 SortedList snippet

SortedList sortedList = new SortedList(shell, SWT.SINGLE, SortedList.FILTER);
sortedList.add("111");
sortedList.add("apple");
sortedList.add("112");
sortedList.add("banana");
sortedList.add("92545");
sortedList.add("111");
sortedList.add("chris");
sortedList.add("list");
sortedList.add("20");

Figure 4-19 on page 71 shows all the items sorted in ascending order. When the user
presses the a key, SortedList filters out all items that do not contain the letter a, as shown in
Figure 4-20.

Figure 4-20 SortedList filter result

4.1.9 TextExtension
TextExtension contains methods for extending the functionality of the Text control. The
functionality is specific to non-full keyboard devices. Applications can request certain text
input modes when a TextExtension control gets focused. The effective input mode takes into
account two style aspects. One aspect is based on the content semantics. The other is based
on the content character set.
Chapter 4. eSWT mobile extensions 73

The editing behavior and appearance are otherwise identical to the Text control. The
differences in TextExtension are to ease the possible switch of initial input modes, such as to
enable or disable predictive input, changing initial casing styles and particular input modes of
some languages. The initial input mode does not persist if it is changed by the user during
editing. Whether the mode will be persist during the application life cycle is
implementation-dependent.

Example
Figure 4-21 shows two examples of TextExtension, above one is
TextExtension.EMAILADDRESS and below one is TextExtension.URL. Instances of
TextExtension that are created with TextExtension styles display a hint to the user for input.
This is just a hint that does not overwrite any input behavior of the TextExtension.

Figure 4-21 TextExtension example

Styles
TextExtension has two sets of styles. Table 4-11 shows the content styles, and Table 4-12
shows the input modifier styles. Content styles provide visual assistance to help user input,
providing a user interface to access the device's personal information management (PIM) or
browser bookmarks, if available. Input modifier styles act as a modifier to input behavior.

Table 4-11 Content styles

Table 4-12 Input modifier styles

Set initial input mode
TextExtension provides a feature to set initial input mode to assist user input. The
setInitialInputMode(int casingModifier, java.lang.String mode) method hints to the
implementation as to the input mode that should be used when the user initiates editing of
this control.

Content Styles Description

EMAILADDRESS An e-mail address

URL A Web address

Input Modifier Styles Description

NON_PREDICTIVE A hint for turning off possible predictive text input. By default any
predictive input facilities should be turned on if available

LATIN_INPUT_ONLY Forces that locale specific input modes should not be available. This is
used in some situations when only Latin characters are allowed, for
example, password text field

Note: EMAILADDRESS and URL are exclusive. You can use only one in content styles.
74 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Table 4-13 contains the casing modifiers that you can use in setInitialInputMode. You can
specify only one.

Table 4-13 Casing modifier

Snippets
Example 4-9 creates a instance of TextExtension and set its initial input mode with
TextExtension.TITLECASE modifier and UCB_BASIC_LATIN mode.

Example 4-9 TextExtension snippet

TextExtension textExtension = new TextExtension(shell, SWT.SINGLE|SWT.BORDER);
textExtension.setInitialInputMode(TextExtension.TITLECASE, "UCB_BASIC_LATIN");

Figure 4-23 is the result when the user types the following:

This Is Textextension With Title Style

Figure 4-22 TextExtension with TITLECASE

TextExtension transforms the inputted characters to follow TITLECASE modifier rule
automatically. However, if you want to overwrite this input behavior, you can backspace to
clear the characters and then type again. Modifier behavior is turned off when backspace is
used. Figure 4-23 shows the result. The first characters of style are not forced to use a capital
letter.

Figure 4-23 TextExtension after turning off modifier

4.2 Widgets
A widget is the interface element used to interact with the user. This section describes
widgets that are provided by the eSWT mobile extensions.

4.2.1 TaskTip
TaskTip provides feedback to the user about the state of a long-running task.

A TaskTip can contain text and an optional progress bar or another object to illustrate current
task state. Similar to a MessageBox, the look and feel of TaskTip is platform-dependent, which
means that there is no API level access to the user interface components inside a TaskTip.

Modifier Description

UPPERCASE The capital letters of a typeface

LOWERCASE The small letters of a typeface, as opposed to the capital letters, or
uppercase letters

TEXTCASE The first word of a sentence is capitalized

TITLECASE Every word is capitalized
Chapter 4. eSWT mobile extensions 75

Unlike a MessageBox, the TaskTip is a non-focusable window and does not change the current
window's activation or focus.

When constructed without a style constant, a TaskTip displays plain text to indicate task
progress.

A TaskTip becomes visible by calling setVisible(true) and remains visible until the
application calls setVisible(false). When a new TaskTip is created before hiding or
disposing of a prior TaskTip, the newest becomes the top-most TaskTip and obscures the
prior ones, if any exist.

A TaskTip cannot be positioned programmatically or by the user. The position is
implementation-dependent.

Example
Figure 4-24 shows an example of TaskTip.

Figure 4-24 TaskTip example

Styles
Figure 4-14 shows the styles that are used in TaskTip.

Table 4-14 TaskTip styles

Set text and progress indicator
TaskTip provides several methods to set text and progress indicator:

� setMaximum(int value)

Sets the maximum value that the TaskTip allows.

� setMinimum(int value)

Sets the minimum value that the TaskTip allows.

� setSelection(int value)

Sets the position of the TaskTip indicator to the provided value.

� setText(java.lang.String string)

Sets the label text.

� setVisible(boolean visible)

Makes the TaskTip visible and brings it to the front of the display.

Styles Description

SMOOTH Displays a visual indicator of what portion of the progress is left to go

INDETERMINATE Displays a visual indicator that a long-running process is progressing

Note: TaskTip is intended to be invisible when created. The application can use
setVisible to turn on and to turn off the display of TaskTip.
76 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Snippets
Example 4-10 is a snippet for the result that is shown in Figure 4-24 on page 76.

Example 4-10 TaskTip snippet

TaskTip tasktip = new TaskTip(shell, SWT.SMOOTH);
tasktip.setMinimum(0);
tasktip.setMaximum(100);
tasktip.setSelection(63);
tasktip.setText("Progress...");
tasktip.setVisible(true);

4.3 Dialogs
This section describes dialogs that are provided by the eSWT mobile extensions.

4.3.1 MultiPageDialog
Instances of MultiPageDialog represents a tabbed dialog. The dialog contains multiple
pages. Each page contains a composite. At any given time, only one page is visible. The
page visibility can be selected by users or applications programmatically. It provides function
similar to TabFolder in desktop SWT, but in a more platform-dependent fashion.

Each page has a label. The platform might display the label as text, an icon, or both together.
The size and position of page labels is implementation-dependent. There is no fixed limit on
the number of pages. A runtime exception might be thrown when resources are insufficient to
create a new page.

Example
Figure 4-25 shows an example of MultiPageDialog. For pages that cannot fit in the screen,
MultiPageDialog provides two arrow buttons for user to browse.

Figure 4-25 MultiPageDialog example
Chapter 4. eSWT mobile extensions 77

Events
MultiPageDialog has one event, SelectionEvent, which can be accessed via the following
methods:

� addSelectionListener(SelectionListener listener)

Adds the listener to the collection of listeners who are notified when the page changes by
sending it one of the messages that are defined in the SelectionListener interface.

When widgetSelected is called, the item field of the event object is valid.
widgetDefaultSelected is not called.

� removeSelectionListener(SelectionListener listener)

Removes the listener from the collection of listeners who are notified when the
MultiPageDialog selection changes.

Open and close dialog
Like other dialogs, MultiPageDialog has methods to open and close dialog, as follows:

� open()

Makes the dialog visible, and brings it to the front of the display.

� close()

Requests that the window manager close the dialog in the same way it would be closed
when the user selects the close box or performs some other platform-specific key or
mouse combination that indicates that the window should be removed.

Pages manipulation
MultiPageDialog provides several ways to perform pages operation, including the following:

� createPage(java.lang.String title, Image icon)

Creates a new page with the specified title string and icon.

� deletePage(int index)

Deletes the page from the MultiPageDialog at the given zero-relative index.

� getPage(int index)

Returns the composite of the page at the given zero-relative index in the MultiPageDialog.

� getPageCount()

Returns the number of pages contained in the MultiPageDialog.

� getTitle(int index)

Returns the title string of the page at the given zero-relative index in the MultiPageDialog.

� setImage(int index, Image icon)

Sets the icon image of the page at the given zero-relative index. Note that the icon size is
implementation-dependent so that the icon image can be stretched or shrunk
automatically.

� setSelection(int index)

Selects the active page by the given zero-relative index.
78 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Snippets
Example 4-11 creates an instance of MultiPageDialog that is shown in Figure 4-26. It creates
three pages. First one is created with an image set on the title. Within the first pages, it puts
some fields to represent personal information.

Example 4-11 MultiPageDialog snippet

Composite pages[] = new Composite[3];
MultiPageDialog mpd = new MultiPageDialog(shell);
pages[0] = mpd.createPage("Personal",new Image(display,"\\eSWT\\childs.jpg"));
pages[1] = mpd.createPage("Business",null);
pages[2] = mpd.createPage("Travel",null);

pages[0].setLayout(new RowLayout(SWT.VERTICAL));

// Name
CaptionedControl name = new CaptionedControl(pages[0], SWT.LEFT_TO_RIGHT);
name.setText("Name:");
Text userName = new Text(name, SWT.SINGLE);
userName.setText("John");
userName.setEditable(true);

// Surname
CaptionedControl surname = new CaptionedControl(pages[0], SWT.LEFT_TO_RIGHT);
surname.setText("Surname:");
Text userSurname = new Text(surname, SWT.SINGLE);
userSurname.setText("Marshall");

// Date of birth
CaptionedControl birthDate = new CaptionedControl(pages[0], SWT.LEFT_TO_RIGHT);
birthDate.setSize(200,30);
birthDate.setText("Date of birth:");
DateEditor birthDateEditor = new DateEditor(birthDate, SWT.NORMAL, DateEditor.DATE |
DateEditor.FULL);

// Phone number
CaptionedControl phoneNumber = new CaptionedControl(pages[0], SWT.LEFT_TO_RIGHT);
phoneNumber.setText("Phone number:");
ConstrainedText userPhoneNumber = new ConstrainedText(phoneNumber, SWT.NORMAL,
ConstrainedText.PHONENUMBER);
userPhoneNumber.setText("6902690369");

pages[0].layout();
mpd.open();

Figure 4-26 MultiPageDialog snippet result
Chapter 4. eSWT mobile extensions 79

4.3.2 TimedMessageBox
TimedMessageBox is a modal window that is used to inform the user of limited information
using a standard style.

A TimedMessageBox is capable of closing itself automatically after a certain period of time.
There is no need to define button styles for TimedMessageBox.

Unlike TaskTip, the TimedMessageBox is a modal dialog and execution is blocked until the
dialog is closed after a short period of time. The exact time-out duration is implementation
dependent. Applications cannot change the period of time.

Example
Example 4-27 shows an example of TimedMessageBox.

Figure 4-27 TimedMessageBox example

Styles
Table 4-15 shows the styles that are used in TimedMessageBox.

Table 4-15 TimedMessageBox styles

Set image and message
TimedMessageBox is similar to MessageBox, but it provides image support. The following
methods are available with TimedMessageBox:

� setImage(Image image)

Sets the TimedMessageBox icon image.

� getImage()

Returns the icon object.

� setMessage(java.lang.String string)

Sets the dialog's message, which is a description of the purpose for which it was opened.

� getMessage()

Returns the dialog's message, which is a description of the purpose for which it was
opened.

Styles Description

ICON_WORKING Informs that an action was successful

ICON_INFORMATION Informs of a situation that might not require user action

ICON_WARNING Informs of a situation that might require user intervention

ICON_ERROR Informs that a serious situation has occurred
80 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Snippets
Example 4-12 creates a TimedMessageBox with one icon that displays some messages as
shown in Figure 4-27 on page 80.

Example 4-12 TimedMessageBox snippet

TimedMessageBox tmb = new TimedMessageBox(shell);
tmb.setImage(new Image(display, "\\eSWT\\lotus.png"));
tmb.setMessage("A beautiful lotus");
tmb.open();

4.4 Items
Items are widgets contained by other controls. This section describes items that are provided
by the eSWT mobile extensions.

4.4.1 Command
Command is a metaphor that represents a general action. Command contains no information
about the behavior that happens when a command is activated. The concrete action is
defined in a SelectionListener. You can implement this command using any user interface
construct that has semantics for activating a single action. Some implementations might
implement commands as widgets, such as buttons or menu items, or voice tags. However,
the implementation should not affect an application's layout adversely when realizing
commands.

Command must be associated with a control and only becomes accessible when that control is
in the current focus context. The current focus context includes the control that currently has
focus and all of its visible ancestor controls up through the lowest level Shell. The term
visible refers to widgets that are not explicitly hidden by calling setVisible(false). The focus
context does not include siblings of the control with focus or ancestors of the lowest level
Shell.

Example
Figure 4-28 shows an example of TimedMessageBox running on a Pocket PC.

Figure 4-28 Command example

Note: Use of Command is highly encouraged. Command is an abstract that the Mobile
Extensions library maps to a specific mechanism, depending upon the device capabilities.
This is usually pointer-driven menus or soft keys.
Chapter 4. eSWT mobile extensions 81

Types
The type value of Command describes Command behavior and priority for positioning hints, as
shown in Table 4-16.

Table 4-16 Command type

Events
Command has one event, SelectionEvent, which can be accessed via the following methods:

� addSelectionListener(SelectionListener listener)

Adds the listener to the collection of listeners who are notified when the control is selected
by sending it one of the messages that are defined in the SelectionListener interface.

� removeSelectionListener(SelectionListener listener)

Removes the listener from the collection of listeners who are notified when the control is
selected.

Long label and accelerator
In addition to setText(), which sets the preliminary information of Command, Command also
provides setLongLable() to set longer information that is associated with Command if enough
displaying area. The following methods are available:

� setLongLabel(java.lang.String label)

Sets the command's long label text. Commands might optionally have long labels,
enabling the application to specify a short form for button or softkey and a more verbose
form when realized as menu item.

� getLongLabel()

Returns the command's long label, which shall be null if it has never been set.

Types Description

BACK Hints to the implementation to navigate backward

CANCEL A standard negative answer to an action

COMMANDGROUP Used for grouping commands

DELETE Hints to the implementation to destroy data

EXIT Indicates an exiting action

GENERAL Can be bound to any hardware keys or softkeys

HELP Specifies a request for online help

OK Returns the user to the logical OK action

SELECT Represents the context-sensitive action

STOP Stops some currently running process, operation, and so forth

Note: When Command is created with another Command as parent, the parent Command type
must be COMMANDGROUP. This type of Command does not fire SelectionEvent.
82 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Default command and priority
Command is a mobile-specific control in eSWT mobile extension. It provides some methods to
map buttons to default Command or high priority Command. This feature is platform dependent.
For example, implementation on Pocket PC does not support mapping buttons due to no
programmable buttons that are available on generic Pocket PC. The following methods are
available:

� setDefaultCommand()

Sets the default command.

� getPriority()

Returns the command's priority value.

� isEnabled()

Returns true if the Command is enabled; false otherwise.

Snippets
Example 4-13 creates one Command for Shell with SELECT style and one Command for Text with
SELECT. Followed by creation of Button, it also creates a CommandGROUP Command and then
associates three Select Command with this group Command.

Example 4-13 Command snippets

//Create a shell and set layout
Shell shell = new Shell(display);
RowLayout rowLayout = new RowLayout();
rowLayout.type = SWT.VERTICAL;
shell.setLayout(rowLayout);

// Command for Shell
Command shellCommand = new Command(shell, Command.SELECT, 0);
shellCommand.setText("Shell Command");

// Create a text and command for it
Text text = new Text(shell, SWT.SINGLE|SWT.BORDER);
text.setText("This is a text");
Command textCommand = new Command(text, Command.SELECT, 0);
textCommand.setText("Text Command");

// Create a button and a group command for it
Button button = new Button(shell, SWT.PUSH);
button.setText("Push Me");
Command groupCommand = new Command(button, Command.COMMANDGROUP, 0);
groupCommand.setText("Button Command");

// Create a set of commands associated with group command
Command buttonCommand1 = new Command(groupCommand, Command.SELECT, 0);
buttonCommand1.setText("Inside group - 1");
Command buttonCommand2 = new Command(groupCommand, Command.SELECT, 0);
buttonCommand2.setText("Inside group - 2");
Command buttonCommand3 = new Command(groupCommand, Command.SELECT, 0);
buttonCommand3.setText("Inside group - 3");
Chapter 4. eSWT mobile extensions 83

Figure 4-29 shows the result of this snippet. When text gets focus, its associated Command
shows along with the parent’s Command (shellCommand). When the user selects Button, the
Command list changes automatically to contain Button Command and the parent’s Command as well
(as shown in Figure 4-30 on page 84).

Figure 4-29 Command example when text gets focus

Figure 4-30 Command example when button gets focus
84 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Group Command does not fire SelectionEvent. When the user selects it, it brings up the
Command that is associated with it (Figure 4-31).

Figure 4-31 Group command

4.5 Device-related
This section describes device-related methods.

4.5.1 MobileDevice
MobileDevice represents the device that is being used. It provides methods that enable
applications to learn more about the device-specific characteristics and capabilities.

Applications can query what input features and display screens are a part of the device
permanently. These features are considered local features. Some devices also allow input
mechanisms or screens to be attached to the device at runtime. These features are
considered remote features. Because local features do not come and go, it is sufficient to
query for them once. On the other hand, because remote devices can be added or removed
at any time, an application needs to add a MobileDeviceListener to be informed of these
events.

Local features can also be internal or external. External features are only available when a
device is closed. Internal features are only available when a device is opened.
Chapter 4. eSWT mobile extensions 85

MobileDeviceEvent
MobileDevice has its own event, MobileDeviceEvent, which is sent as a result of device
configuration change. An application can add MobileDeviceListener to get notified when an
event is triggered. The following methods are defined in MobileDeviceListener:

� deviceChanged(MobileDeviceEvent event)

Called when a device configuration has been changed, such as opened or closed.

� inputChanged(MobileDeviceEvent event)

Called when the input configuration has been changed.

� screenChanged(MobileDeviceEvent event)

Called when a screen configuration has been changed.

Applications can add and remove MobileDeviceListener via the following methods:

� addMobileDeviceListener(MobileDeviceListener listener)

Adds the listener to the collection of listeners who are notified when a device configuration
change occurs by calling one of the methods that are defined in the
MobileDeviceListener interface.

� removeMobileDeviceListener(MobileDeviceListener listener)

Removes the listener from the collection of listeners who are notified when a device
configuration change occurs.

Get devices
Application cannot create an instance of MobileDevice via MobileDevice(). To get an
instance of MobileDevice, an application should use getMobileDevice() to get an static
instance of MobileDevice. Mobile devices are not intended to be changed by an application.
MobileDevice acts as a static object for an application to query device configuration and get
notified when configuration change. The following methods are available:

� getMobileDevice()

Returns singleton instance of MobileDevice class.

� getInputs()

Returns an array of Input objects describing the input features available to the device.

� getScreens()

Returns an array of screen objects describing the display features available to the device.

Snippets
Example 4-14 shows how to get an instance of MobileDevice and then gets device
configuration, including screens and inputs.

Example 4-14 MobileDevice snippets

final MobileDevice md = MobileDevice.getMobileDevice();
Screen[] screens = md.getScreens();
Input[] inputs = md.getInputs();
86 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

4.5.2 Screen
Screen represents display screens available for application use.

Types and styles
Table 4-17 lists Screen usage types, and Table 4-18 lists orientation style.

Table 4-17 Screen usage types

Table 4-18 Orientation style

Events
Screen defines its own event, ScreenEvent, when screens configuration change. An
application can add ScreenEvent to get notified when an event is triggered. The following
methods are defined in ScreenListener:

� screenActivated(ScreenEvent event)

Sent when the screen is activated.

� screenDeactivated(ScreenEvent event)

Sent when the screen is deactivated.

� screenOrientationChanged(ScreenEvent event)

Sent when the screen's orientation is changed.

The application can add and remove ScreenListener via the following methods:

� addEventListener(ScreenListener listener)

Adds the listener to the collection of listeners that are notified when screen events occur
by sending it one of the messages that are defined in the ScreenListener interface.

� removeEventListener(ScreenListener listener)

Removes the listener from the collection of listeners that are notified when screen events
occur.

Get screen configuration
Screen provides the following methods to get screen configuration:

� getBounds()

Returns the bounds of the screen.

� getColorDepth()

Returns the color depth of the screen in bits per pixel.

Types Description

PRIMARY One primary screen can be active at a time

SECONDARY Multiple secondary screens can be active simultaneously

STATUS Sub type of secondary screen that shows minimal content for notification
purposes

Styles Description

LANDSCAPE Indicates text is written normally across the longest width

PORTRAIT Indicates text is written normally across the shortest width
Chapter 4. eSWT mobile extensions 87

� getLocation()

Returns the location of the screen device.

� getOrientation()

Returns the screen orientation.

� getUsage()

Returns the usage type of the screen.

In addition to retrieval of screen configuration, Screen also provides one method to change
the orientation of Screen. The setOrientation(int orientation) method sets the screen
orientation if supported on this device.

Snippets
Example 4-15 gets an array of Screen and outputs the bound of each screen.

Example 4-15 Screen snippet

final MobileDevice md = MobileDevice.getMobileDevice();
Screen[] screens = md.getScreens();
for (int i=0; i<screens.length; i++) {

Rectangle bounds = screens[i].getBounds();
System.out.println("screen "+i+": width="+bounds.width+", height="+bounds.height);

}

4.5.3 Input
Input represents key-based input features.

Types
Table 4-19 shows the types of input.

Table 4-19 Table types

Get input configuration
Input provides the following methods to retrieve input configuration:

� getLocation()

Returns the location of the input device.

� getType()

Returns the type of input device.

Types Description

FULL_KEYBOARD Input feature has hardware keys typical in a full keyboard

KEYPAD Input feature has hardware keys labeled 0 through 9, asterisk (*), and
number sign (#)

LIMITED_KEYBOARD Input feature has more hardware keys than a keypad but fewer than a
full keyboard

SOFTKEYS Input feature has one or more hardware keys whose meaning can be
configured
88 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Chapter 5. eSWT expanded

This chapter provides a detailed description of the following components found within
embedded Standard Widget Toolkit (eSWT) expanded:

� Layouts

– FillLayout
– RowLayout
– GridLayout

� Dialogs

– ColorDialog
– DirectoryDialog
– FontDialog

� Controls

– Table
– Tree

� Browser

– Browser

5

© Copyright IBM Corp. 2006. All rights reserved. 89

5.1 Layouts
Layouts are used to arrange controls. This section provides details about additional layouts
that are supported in the eSWT expanded optional component.

5.1.1 FillLayout
FillLayout is the simplest layout class. It controls layout using a single row or column.
Available space is distributed evenly between children.

Public Fields
Table 5-1 list the FillLayout public fields to assist layout in an eSWT application.

Table 5-1 Public fields of FillLayout

Snippets
FillLayout is commonly used to lay out a single child. You can also use it to lay out multiple
children. Example 5-1 creates a shell that contains only one button. Example 5-2 creates five
buttons.

Example 5-1 Single child in FillLayout

shell.setLayout(new FillLayout());
Button button = new Button(shell, SWT.PUSH|SWT.BORDER);
button.setText("One");

Example 5-2 Multiple children in FillLayout

shell.setLayout(new FillLayout());
Button button1 = new Button(shell, SWT.PUSH|SWT.BORDER);
button1.setText("One");
Button button2 = new Button(shell, SWT.PUSH|SWT.BORDER);
button2.setText("Two");
Button button3 = new Button(shell, SWT.PUSH|SWT.BORDER);
button3.setText("Three");
Button button4 = new Button(shell, SWT.PUSH|SWT.BORDER);
button4.setText("Four");
Button button5 = new Button(shell, SWT.PUSH|SWT.BORDER);
button5.setText("Five");

Field Description

marginHeight Specifies the number of pixels of vertical margin that are placed along the top
and bottom edges of the layout

marginWidth Specifies the number of pixels of horizontal margin that are placed along the
left and right edges of the layout

spacing Specifies the number of pixels between the edge of one cell and the edge of
its neighboring cell

type Specifies how controls are positioned within the layout
90 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Figure 5-1 and Figure 5-2 shows the results of these examples.

Figure 5-1 One button occupies the entire shell

Figure 5-2 Multiple buttons occupy the shell evenly

5.1.2 RowLayout
Unlike FillLayout, RowLayout lays out its children in a more elegant way, either vertically or
horizontally, depending on the type that is specified in RowLayout. RowLayout also has the
Chapter 5. eSWT expanded 91

ability to wrap and provides configurable margins and spacing. In addition, you can specify
the height and width of each control in a RowLayout by setting a RowData object into the control
using setLayoutData().

Public Fields
Table 5-2 lists the public fields to assist in the layout process in an eSWT application.

Table 5-2 Public fields of RowLayout

Field Description

fill Specifies whether the controls in a row should be all the same height for
horizontal layouts, or the same width for vertical layouts

justify Specifies whether the controls in a row should be fully justified, with any
extra space placed between the controls

marginBottom Specifies the number of pixels of vertical margin that are placed along the
bottom edge of the layout

marginHeight Specifies the number of pixels of vertical margin that are placed along the
top and bottom edges of the layout

marginLeft Specifies the number of pixels of horizontal margin that are placed along
the left edge of the layout

marginRight Specifies the number of pixels of horizontal margin that are placed along
the right edge of the layout

marginTop Specifies the number of pixels of vertical margin that are placed along the
top edge of the layout

marginWidth Specifies the number of pixels of horizontal margin that are placed along
the left and right edges of the layout

pack Specifies whether all controls in the layout take their preferred size

spacing Specifies the number of pixels between the edge of one cell and the edge
of its neighboring cell

type Specifies whether the layout places controls in rows or columns; the default
is SWT.HORIZONTAL

wrap Specifies whether a control is wrapped to the next row if there is insufficient
space on the current row
92 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Snippets
This section includes several examples to demonstrate how RowLayout works.

Normal RowLayout
Example 5-3 changes the layout that is used in Example 5-2 on page 90 to RowLayout.

Example 5-3 RowLayout snippets

shell.setLayout(new RowLayout());
Button button1 = new Button(shell, SWT.PUSH|SWT.BORDER);
button1.setText("One");
Button button2 = new Button(shell, SWT.PUSH|SWT.BORDER);
button2.setText("Two");
Button button3 = new Button(shell, SWT.PUSH|SWT.BORDER);
button3.setText("Three");
Button button4 = new Button(shell, SWT.PUSH|SWT.BORDER);
button4.setText("Four");
Button button5 = new Button(shell, SWT.PUSH|SWT.BORDER);
button5.setText("Five");

Figure 5-3 shows the result of this change.

Figure 5-3 Horizontal RowLayout
Chapter 5. eSWT expanded 93

Figure 5-4 shows how a vertical layout works when the type set in RowLayout is SWT.VERTICAL.

Figure 5-4 Vertical RowLayout

RowLayout with wrap
If the total width of the children plus all spacings over the width of parent composite or shell,
RowLayout can help to perform wrapping if wrap is set. Example 5-4 shows the same code
snippet with and without wrap (Figure 5-5 on page 95 and at Figure 5-6 on page 95).

Example 5-4 RowLayout with wrap

RowLayout rowLayout = new RowLayout();
rowLayout.wrap = true;
shell.setLayout(rowLayout);
for (int i=0; i<20; i++) {

Button button = new Button(shell, SWT.PUSH|SWT.BORDER);
button.setText("Btn"+i);

}

94 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Figure 5-5 RowLayout with wrap

Figure 5-6 RowLayout without wrap

RowLayout with fill
If RowLayout is dealing with different types of controls, each control has their own width and
height. What RowLayout normally does is lay out them in a row (if type is set to be
SWT.HORIZONTAL) with all control aligned at the top but the bottom varies, depending on
control’s height. In order to make all controls aligned both on the top and bottom (with the
same height or width), the fill type is used and it works inversely with the type of layout.
Chapter 5. eSWT expanded 95

Example 5-5 shows how fill used in layout for two buttons and a label in a column. All controls
are set as the same width as shown at Figure 5-7.

Example 5-5 RowLayout with fill

RowLayout rowLayout = new RowLayout(SWT.VERTICAL);
rowLayout.fill = true;
shell.setLayout(rowLayout);
for (int i=0; i<2; i++) {

Button button = new Button(shell, SWT.PUSH|SWT.BORDER);
button.setText("Btn"+i);

}
Image image = new Image(display,"\\eSWT\\childs.jpg");
Label label = new Label(shell,SWT.BORDER);
label.setImage(image);

Figure 5-7 RowLayout with fill

RowLayout with RowData
The way RowLayout lays out children is to call Control.computeSize() to get the preferred
size of each control. If the application wants to set the size of control explicitly, it can use
RowData to override the RowLayout default behavior.

Example 5-6 creates four buttons with different RowData laid out in a column. The result is
shown at Figure 5-8 on page 97.

Example 5-6 RowLayout with RowData

RowLayout rowLayout = new RowLayout(SWT.VERTICAL);
shell.setLayout(rowLayout);
for (int i=0; i<4; i++) {

Button button = new Button(shell, SWT.PUSH|SWT.BORDER);
button.setText("Btn"+i);
button.setLayoutData(new RowData(20*(i+1), 10*(i+1)));

}

96 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Figure 5-8 Controls with different RowData

5.1.3 GridLayout
GridLayout is a powerful layout tool that provides a good means to position each control
within a shell. GridLayout lays out all children in a row. An important field, numColumns,
controls how many columns are used in the layout process. The total number of children and
number of columns are used by GridLayout to determine the number of rows and total cells
implicitly. Applications can align each control to any side of the cell. In addition, controls can
span cells either horizontally or vertically.

Public fields
Table 5-3 lists the public fields to assist layout in an eSWT application.

Table 5-3 Public fields of GridLayout

Field Description

horizontalSpacing Specifies the number of pixels between the right edge of one cell
and the left edge of its neighboring cell to the right

makeColumnsEqualWidth Specifies whether all columns in the layout are forced to have the
same width

marginBottom Specifies the number of pixels of vertical margin that are placed
along the bottom edge of the layout

marginHeight Specifies the number of pixels of vertical margin that are placed
along the top and bottom edges of the layout

marginLeft Specifies the number of pixels of horizontal margin that are placed
along the left edge of the layout

marginRight Specifies the number of pixels of horizontal margin that are placed
along the right edge of the layout

marginTop Specifies the number of pixels of vertical margin that are placed
along the top edge of the layout

marginWidth Specifies the number of pixels of horizontal margin that are placed
along the left and right edges of the layout

numColumns Specifies the number of cell columns in the layout

verticalSpacing Specifies the number of pixels between the bottom edge of one
cell and the top edge of its neighboring cell underneath
Chapter 5. eSWT expanded 97

GridData
GridData provides an elegant way to configure many layout attributes within a single cell.
Table 5-4 lists the public fields that provide flexibility over position and size of control .

Table 5-4 GridData public fields

Snippets
This section includes examples that demonstrate how GridLayout works.

Normal GridLayout
Example 5-7 creates 20 buttons and uses GridLayout with four columns.

Example 5-7 GridLayout snippet

GridLayout gridLayout = new GridLayout();
shell.setLayout(gridLayout);
gridLayout.numColumns = 4;
for (int i=0; i<20; i++) {

Button button = new Button(shell, SWT.PUSH|SWT.BORDER);
button.setText("Btn"+i);

}

Note: Do not reuse GridData objects. Every control in a Composite that is managed by a
GridLayout must have a unique GridData object. If the layout data for a control in a
GridLayout is null at layout time, a unique GridData object is created for it.

Fields Description

exclude Informs the layout to ignore this control when sizing and positioning
controls

FILL Value for horizontalAlignment or verticalAlignment

grabExcessHorizontalSpace Specifies whether the width of the cell changes depending on the
size of the parent Composite

grabExcessVerticalSpace Specifies whether the height of the cell changes depending on the
size of the parent Composite

heightHint Specifies the preferred height in pixels

horizontalAlignment Specifies how controls will be positioned horizontally within a cell

horizontalIndent Specifies the number of pixels of indentation that are placed along
the left side of the cell

horizontalSpan Specifies the number of column cells that the control takes up

minimumHeight Specifies the minimum height in pixels

minimumWidth Specifies the minimum desired width in pixels

verticalAlignment Specifies how controls are positioned vertically within a cell

verticalIndent Specifies the number of pixels of indentation that are placed along
the top side of the cell

verticalSpan Specifies the number of row cells that the control takes up

widthHint Specifies the preferred width in pixels
98 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Figure 5-9 shows the result of this example.

Figure 5-9 GridLayout with four columns

If you change the number of columns from four to three, GridLayout uses only three columns
to place these controls, as shown in Figure 5-10.

Figure 5-10 GridLayout with three columns

GridLayout with equal width
In GridLayout, the width of each column depends on the width of the widest control within one
column. Applications can use makeColumnsEqualWidth to set each column with the same
width.

Figure 5-11 shows when makeColumnsEqualWidth is not set, and Figure 5-12 shows when
makeColumnsEqualWidth is set.

Figure 5-11 makeColumnsEqualWidth is not set
Chapter 5. eSWT expanded 99

Figure 5-12 makeColumnEqualWidth is set

GridLayout with GridData
You can use GridData to write a typical profile dialog, along with a CaptionedControl. (For
information about CaptionedControl, see 4.1.1, “CaptionedControl” on page 52.)
Example 5-8 creates a three column GridLayout with a photo label that expands to four cells.
It then has three CaptionedControl controls that contain personal information, including
name, troop, and nation (all expand their width to two-cell width). The remaining two buttons
use SWT.Fill and SWT.CENTER to position themselves in their cells.

Example 5-8 GridLayout with GridLayout

//Create a shell and set layout
Shell shell = new Shell(display);
Shell smallShell = new Shell(shell,SWT.DIALOG_TRIM|SWT.CLOSE);
Label photo = new Label(smallShell, SWT.NONE);
Image image = new Image(display,
HelloWorldeSWT.class.getResourceAsStream("res/Resident.jpg"));
photo.setImage(image);
CaptionedControl nameCaption = new CaptionedControl(smallShell, SWT.NONE);
nameCaption.setText("Name");
Text nameText = new Text(nameCaption, SWT.SINGLE);
nameText.setText("Resident eRCP");
CaptionedControl troopCaption = new CaptionedControl(smallShell, SWT.NONE);
troopCaption.setText("Troops");
Text troopText = new Text(troopCaption, SWT.SINGLE);
troopText.setText("G.R.E.E.N.");
CaptionedControl nationCaption = new CaptionedControl(smallShell, SWT.NONE);
nationCaption.setText("Nation");
Text nationText = new Text(nationCaption, SWT.SINGLE);
nationText.setText("I.T.S.O.");
Button addButton = new Button(smallShell,SWT.PUSH|SWT.BORDER);
addButton.setText("Add");
Button cancelButton = new Button(smallShell,SWT.PUSH|SWT.BORDER);
cancelButton.setText("Cancel");
smallShell.setSize(240,200);

//set the layout
GridLayout gridLayout = new GridLayout(3, true);
gridLayout.marginWidth = gridLayout.marginHeight = 3;
GridData labelData = new GridData(SWT.FILL, SWT.CENTER, true, true,1,4);
photo.setLayoutData(labelData);
GridData nameCaptionData = new GridData(SWT.FILL, SWT.LEFT, true, false, 2,1);
nameCaption.setLayoutData(nameCaptionData);
GridData troopCaptionData = new GridData(SWT.FILL, SWT.LEFT, true, false, 2,1);
troopCaption.setLayoutData(troopCaptionData);
GridData nationCaptionData = new GridData(SWT.FILL, SWT.LEFT, true, false, 2,1);
nationCaption.setLayoutData(nationCaptionData);
GridData addButtonData = new GridData(SWT.FILL, SWT.CENTER, false, true);
addButton.setLayoutData(addButtonData);
GridData cancelButtonData = new GridData(SWT.FILL, SWT.CENTER, false, true);
cancelButton.setLayoutData(cancelButtonData);
smallShell.setLayout(gridLayout);
100 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Figure 5-13 shows the result of this example.

Figure 5-13 GridLayout with GridData

5.1.4 ColorDialog
ColorDialog allows the user to select a color from a predefined set of available colors.

Manipulate RGB values
ColorDialog provides the following methods to set and get RGB values:

� getRGB()

Returns the currently selected color in the ColorDialog.

� setRGB(RGB rgb)

Sets the ColorDialog color value.

Snippets
Example 5-9 shows how to open a ColorDialog.

Example 5-9 ColorDialog snippet

ColorDialog colorDialog = new ColorDialog(shell);
colorDialog.open();

Figure 5-14 shows this example running on a Pocket PC.

Figure 5-14 ColorDialog example
Chapter 5. eSWT expanded 101

5.1.5 DirectoryDialog
DirectoryDialog allows the user to navigate the file system and select a directory.

FilterPath and Message
Applications can set the initial directory path in DirectoryDialog and a message when the
dialog opens. The following methods are available:

� setFilterPath(java.lang.String string)

Sets the path that the dialog uses to filter the directories that it shows to the argument,
which might be null.

� getFilterPath()

Returns the path which the dialog uses to filter the directories that it shows.

� setMessage(java.lang.String string)

Sets the dialog's message, which is a description of the purpose for which it was opened.

� getMessage()

Returns the dialog's message, which is a description of the purpose for which it was
opened.

Snippets
Example 5-10 opens a DirectoryDialog and set its message.

Example 5-10 DirectoryDialog snippet

DirectoryDialog directoryDialog = new DirectoryDialog(shell);
directoryDialog.setMessage("Choose the path...");
directoryDialog.open();

5.1.6 FontDialog
FontDialog allows the user to select a font from all available fonts in the system.

Font list and RGB values
An application can set or get a font list and RGB with FontDialog using the following
methods:

� setFontList(FontData[] fontData)

Sets a set of FontData objects describing the font to be selected by default in the dialog, or
null to let the platform choose one.

� getFontList()

Returns a FontData set describing the font that was selected in the dialog, or null if none
is available.

� setRGB(RGB rgb)

Sets the FontDialog’s selected color.

� getRGB()

Returns the currently selected color in the FontDialog.
102 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Snippets
Example 5-11 opens a FontDialog.

Example 5-11 FontDialog snippet

FontDialog fontDialog = new FontDialog(shell);
fontDialog.open();

5.1.7 Table
Table implements a selectable user interface object that displays a list of images and strings
and issues notifications when items are selected. The children that might be added to
instances of this class must be of type TableItem.

Styles
Table 5-5 shows the styles used in Table.

Table 5-5 Table styles

Events
Table has one event, SelectionEvent, which can be accessed via the following methods:

� addSelectionListener(SelectionListener listener)

Adds the listener to the collection of listeners who are notified when the control is selected
by sending it one of the messages that are defined in the SelectionListener interface.

� removeSelectionListener(SelectionListener listener)

Removes the listener from the collection of listeners who are notified when the control is
selected.

Note: Although Table is a subclass of Composite, it does not make sense to add Control
children to it or to set a layout on it.

Styles Description

SWT.SINGLE Creates a single select Table

SWT.MULTI Creates a multiple select Table

SWT.CHECK Creates a table with check boxes

SWT.FULL_SELECTION The selection effect will expand to entire row when selected

SWT.HIDE_SELECTION The selection is hidden when focus out
Chapter 5. eSWT expanded 103

TableItem and TableColumn
TableItem is a fundamental object to represent an item or items in a Table. TableColumn
represents a column in a Table. Applications can create table items without creating columns
(in this case, a Table looks like a list).

Table provides the following methods to get and to remove TableItem and TableColumn
objects:

� getColumn(int index)

Returns the column at the given, zero-relative index in the Table.

� getColumnCount()

Returns the number of columns contained in the Table.

� getColumns()

Returns an array of TableColumn which are the columns in the Table.

� getItem(int index)

Returns the item at the given, zero-relative index in the Table.

� getItem(Point point)

Returns the item at the given point in the Table or null if no such item exists.

� getItemCount()

Returns the number of items contained in the Table.

� getItemHeight()

Returns the height of the area which would be used to display one of the items in the
Table.

� getItems()

Returns a (possibly empty) array of TableItem which are the items in the Table.

� remove(int index)

Removes the item from the Table at the given zero-relative index.

� remove(int[] indices)

Removes the items from the Table list at the given zero-relative indices.

� remove(int start, int end)

Removes the items from the Table which are between the given zero-relative start and
end indices (inclusive).

� removeAll()

Removes all of the items from the Table.

Selection
Table provides several ways to set selection, almost all of which are index-based. The
following methods are provided to set or to get selection:

� setSelection(int index)

Selects the item at the given zero-relative index in the Table.

� setSelection(int[] indices)

Selects the items at the given zero-relative indices in the Table.
104 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

� setSelection(int start, int end)

Selects the items in the range specified by the given zero-relative indices in the Table.

� setSelection(TableItem[] items)

Sets the Table’s selection to be the given array of items.

� getSelection()

Returns an array of TableItem that is currently selected in the Table.

� getSelectionCount()

Returns the number of items currently selected.

� getSelectionIndex()

Returns the zero-relative index of the item which is currently selected in the Table, or -1 if
no item is selected.

� getSelectionIndices()

Returns the zero-relative indices of the items which are currently selected in the Table.

It also provides several methods to perform deselecting or selecting items:

� deselect(int index)

Deselects the item at the given zero-relative index in the Table.

� deselect(int[] indices)

Deselects the items at the given zero-relative indices in the Table.

� deselect(int start, int end)

Deselects the items at the given zero-relative indices in the Table.

� deselectAll()

Deselects all selected items in the Table.

� select(int index)

Selects the item at the given zero-relative index in the Table.

� void select(int[] indices)

Selects the items at the given zero-relative indices in the Table.

� void select(int start, int end)

Selects the items in the range specified by the given zero-relative indices in the Table.

� void selectAll()

Selects all of the items in the Table.

Snippets
Example 5-12 creates a multi-column Table with the SWT.CHECK style. The second column
adds images to the whole column. When the screen width cannot display the whole Table,
Table brings up a scroll bar automatically.

Example 5-12 Table snippets

Table table = new Table(shell, SWT.SINGLE|SWT.CHECK);
int COLUMNS = 4, ROWS = 4;
table.setHeaderVisible(true);
for (int i=0; i < COLUMNS; i++) {

TableColumn column = new TableColumn(table, SWT.NONE);
column.setText("Col"+i);
Chapter 5. eSWT expanded 105

}
for (int i=0; i< ROWS; i++){

TableItem item = new TableItem(table, SWT.NULL);
for (int j=0; j<COLUMNS;j++){

item.setText(j,"Item "+i+"-"+j);
if (j == 1) {

item.setImage(j, new Image(display,
HelloWorldeSWT.class.getResourceAsStream("res/pgz_2.png")));
}

}
}
for (int i=0; i<COLUMNS; i++){

TableColumn column = table.getColumn(i);
column.pack();

}
table.setSize(240,240);

Figure 5-15 shows the results of this example.

Figure 5-15 Multi-column table

5.1.8 Tree
Tree provides a selectable user interface object that displays a hierarchy of items and issue
notifications when an item in the hierarchy is selected. The children that might be added to
instances of this class must be of type TreeItem.

Note: Although Tree is a subclass of Composite, it does not make sense to add Control
children to it or to set a layout on it.
106 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Styles
Table 5-5 shows the styles used in Tree.

Table 5-6 Tree styles

Event
Like Table, Tree has SelectionEvent, which can be accessed via the following methods:

� addSelectionListener(SelectionListener listener)

Adds the listener to the collection of listeners who are notified when the control is selected
by sending it one of the messages that is defined in the SelectionListener interface.

� removeSelectionListener(SelectionListener listener)

Removes the listener from the collection of listeners who are notified when the control is
selected.

In addition, Tree also has TreeEvent to notify application when a node in Tree is expanded or
collapsed.

� addTreeListener(TreeListener listener)

Adds the listener to the collection of listeners who are notified when an item in the receiver
is expanded or collapsed by sending it one of the messages that are defined in the
TreeListener interface.

� removeTreeListener(TreeListener listener)

Removes the listener from the collection of listeners who are notified when items in the
Tree are expanded or collapsed.

Operations on TreeItem
Applications can perform several operations on TreeItem, such as hierarchical traversing,
selection, and scrolling.

Hierarchical traversing
Tree provides the following methods to perform hierarchical traversing between tree items:

� getParentItem()

Returns the TreeItem parent item, which must be a TreeItem or null when the TreeItem
is a root.

� getItemCount()

Returns the number of items contained in the receiver that are direct item children of the
Tree.

� getItems()

Returns a (possibly empty) array of items contained in the Tree that are direct children of
it.

Styles Description

SWT.SINGLE Creates a single select Tree

SWT.MULTI Creates a multiple select Tree

SWT.CHECK Creates a tree with check boxes
Chapter 5. eSWT expanded 107

Selection
Tree provides the following methods to perform selection:

� setSelection(TreeItem[] items)

Sets the Tree selection to be the given array of items.

� getSelection()

Returns an array of TreeItem that are currently selected in the receiver.

� getSelectionCount()

Returns the number of selected items contained in the Tree.

� selectAll()

Selects all of the items in the Tree.

� deselectAll()

Deselects all selected items in the Tree.

� showItem(TreeItem item)

Shows the item.

� showSelection()

Shows the selection.

Scrolling
An application can scroll the Tree explicitly by getting or setting the top item. The top item of
Tree is the TreeItem that is shown at the top of the Tree. The following methods are available:

� setTopItem(TreeItem item)

Sets the item that is currently at the top of the Tree.

� getTopItem()

Returns the item that is currently at the top of the Tree.

Snippets
Example 5-13 creates a three-level Tree that includes root, nodes, and leaves. Each level is
set with different images.

Example 5-13 Tree snippets

Tree tree = new Tree(shell, SWT.CHECK);
for (int i=0; i<3; i++) {

TreeItem itemI = new TreeItem(tree, SWT.NULL);
itemI.setText("Root"+i);
itemI.setImage(new

Image(display,HelloWorldeSWT.class.getResourceAsStream("res/folderRoot.png")));
for (int j=0; j<4; j++) {

TreeItem itemJ = new TreeItem(itemI, SWT.NULL);
itemJ.setText("Node "+i+"-"+j);
itemJ.setImage(new

Image(display,HelloWorldeSWT.class.getResourceAsStream("res/folder.png")));
for (int k=0; k<4; k++) {

TreeItem itemK = new TreeItem(itemJ, SWT.NULL);
itemK.setText("Leave "+i+"-"+j+"-"+k);
itemK.setImage(new

Image(display,HelloWorldeSWT.class.getResourceAsStream("res/file.png")));
}

}
}

108 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Figure 5-16 shows the result of this example.

Figure 5-16 Tree example

5.1.9 Browser
Browser implements the Web browser user interface. It allows the user to visualize and
navigate through HTML documents.

Events
Browser has four events: LocationEvent, ProgressEvent, StatusTextEvent, and TitleEvent.
These events can be accessed via the following methods to notify applications when an event
is triggered:

� addLocationListener(LocationListener listener)

Adds the listener to the collection of listeners who are notified when the current location
has changed or is about to change.

� removeLocationListener(LocationListener listener)

Removes the listener from the collection of listeners who are notified when the current
location is changed or about to be changed.

� addProgressListener(ProgressListener listener)

Adds the listener to the collection of listeners who are notified when a progress is made
during the loading of the current URL or when the loading of the current URL has been
completed.

� removeProgressListener(ProgressListener listener)

Removes the listener from the collection of listeners who are notified when a progress is
made during the loading of the current URL or when the loading of the current URL has
been completed.

� addStatusTextListener(StatusTextListener listener)

Adds the listener to the collection of listeners who are notified when the status text is
changed.

� removeStatusTextListener(StatusTextListener listener)

Removes the listener from the collection of listeners who are notified when the status text
is changed.
Chapter 5. eSWT expanded 109

� addTitleListener(TitleListener listener)

Adds the listener to the collection of listeners who are notified when the title of the current
document is available or has changed.

� removeTitleListener(TitleListener listener)

Removes the listener from the collection of listeners who are notified when the title of the
current document is available or has changed.

Browser Operations
Applications can tell the Browser control to browse a URL, render HTML, move forward, move
backward, or reload explicitly. Here are the methods of Browser supported in eSWT:

� setUrl(java.lang.String url)

Loads a URL.

� getUrl()

Returns the current URL.

� setText(java.lang.String html)

Renders HTML.

� forward()

Navigate to the next session history item.

� back()

Navigate to the previous session history item.

� isForwardEnabled()

Returns true if the receiver can navigate to the next session history item; false otherwise.

� isBackEnabled()

Returns true if the receiver can navigate to the previous session history item; false
otherwise.

� refresh()

Refresh the current page.

� stop()

Stop any loading and rendering activity.

Snippets
Example 5-14 creates a fully functional but simple browser to allow a user to set a URL, move
forward, move background, and reload. It also adds a Command to terminate the application.
(For more information about commands, see Chapter 4, “eSWT mobile extensions” on
page 51.)

Example 5-14 SimpleBrowser

public class BrowserTest {

static Button prev, reload, next, go;
static Text url;
static Browser browser;

public static void main(String[] args) {
final Display display = new Display();
110 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Shell shell = new Shell(display);

//set window title and size
shell.setText("SimpleBrowser");
shell.setSize(240,320);

//previous button
prev = new Button(shell, SWT.PUSH);
prev.setText("<<");
prev.addSelectionListener(new SelectionListener(){

public void widgetSelected(SelectionEvent e) {
browser.back();

}
public void widgetDefaultSelected(SelectionEvent e) {
}});

//reload button
reload = new Button(shell, SWT.PUSH);
reload.setText("R");
reload.addSelectionListener(new SelectionListener(){

public void widgetSelected(SelectionEvent e) {
browser.refresh();

}
public void widgetDefaultSelected(SelectionEvent e) {
}});

//next button
next = new Button(shell, SWT.PUSH);
next.setText(">>");;
next.addSelectionListener(new SelectionListener(){

public void widgetSelected(SelectionEvent e) {
browser.forward();

}
public void widgetDefaultSelected(SelectionEvent e) {
}});

// url text
url = new Text(shell, SWT.SINGLE|SWT.BORDER);
url.setText("http://");

// go button
go = new Button(shell, SWT.PUSH);
go.setText("GO");
go.addSelectionListener(new SelectionListener(){

public void widgetSelected(SelectionEvent e) {
// TODO Auto-generated method stub
browser.setUrl(url.getText());

}
public void widgetDefaultSelected(SelectionEvent e) {
}});

// browser
browser = new Browser(shell, SWT.NONE);
browser.setUrl("http://www.google.com");

FormLayout formLayout = new FormLayout();
shell.setLayout(formLayout);
formLayout.spacing = 1;
formLayout.marginHeight = formLayout.marginWidth = 2;
Chapter 5. eSWT expanded 111

FormData prevData = new FormData();
prevData.left = new FormAttachment(0);
prevData.top = new FormAttachment(0);
prevData.width = 16;
prev.setLayoutData(prevData);

FormData reloadData = new FormData();
reloadData.left = new FormAttachment(prev);
reloadData.top = new FormAttachment(0);
reloadData.width = 16;
reload.setLayoutData(reloadData);

FormData nextData = new FormData();
nextData.left = new FormAttachment(reload);
nextData.top = new FormAttachment(0);
nextData.width = 16;
next.setLayoutData(nextData);

FormData urlData = new FormData();
urlData.left = new FormAttachment(next);
urlData.top = new FormAttachment(0);
urlData.right = new FormAttachment(89);
urlData.bottom = new FormAttachment(browser);
url.setLayoutData(urlData);

FormData goData = new FormData();
goData.left = new FormAttachment(url);
goData.top = new FormAttachment(0);
goData.width = 24;
go.setLayoutData(goData);

FormData browserData = new FormData();
browserData.top = new FormAttachment(prev);
browserData.left = new FormAttachment(0);
browserData.right = new FormAttachment(100);
browserData.bottom = new FormAttachment(100);
browser.setLayoutData(browserData);

shell.open();
while(!shell.isDisposed()) {

if(!display.readAndDispatch())
display.sleep();

}
display.dispose();

}
}

112 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Figure 5-17 shows how this example runs on Pocket PC.

Figure 5-17 SimpleBrowser example

Users can also change to another URL, as shown in Figure 5-18.

Figure 5-18 SimpleBrowser after URL change
Chapter 5. eSWT expanded 113

114 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Chapter 6. eJFace applications

This chapter provides a summary of the functionality found within the org.eclipse.ercp.jface
package. It first introduces eJFace and then evaluates the most important facets of the toolkit.

6

© Copyright IBM Corp. 2006. All rights reserved. 115

6.1 eJFace fundamentals
To put it simply, eJFace is a platform-independent user interface toolkit that depends upon
embedded Standard Widget Toolkit (eSWT). eJFace provides a set of components and help
utilities that simplify the development of applications that are based in eSWT, just as JFace
does for SWT. In fact, eJFace is a strict subset of JFace, so the two packages share many
similarities. eJFace provides support for resource management, viewers, actions, and
preference pages.

eJFace is smaller than JFace. Figure 6-1 provides a class diagram of the eJFace packages.

Figure 6-1 eJFace packages

The following list describes these:

� org.eclipse.jface.operation

Provides support classes for dealing with threading and operations (modal, long-running,
and so forth).

� org.eclipse.jface.viewers

Provides a model-view-controller framework for viewers based off of eSWT widgets such
as a Table or a Tree. It allows for the strict separation of the model that drives the display
logic.

� org.eclipse.jface.util

Provides utility classes pertinent to eJFace (for example, assertions and geometric
operations on eSWT classes).

� org.eclipse.jface.resource

Provides support for managing eSWT resources such as fonts, images, and colors.

� org.eclipse.jface.action

Provides support for managing actions. Actions represent a command to manipulate a
model, commonly found menus.

� org.eclipse.jface.preference

Provides support for manipulating and viewing preferences.
116 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

6.2 Viewers
Viewers are wrappers that simplify development on eSWT widgets. In the simplest terms,
viewers provide utilities that allow you to keep the user interface (eSWT widget) synchronized
with the model. eJFace plays host to several types of viewers that map to their eSWT
counterparts: check box, combo box, list, table, and tree viewers. This section discusses the
fundamentals of the viewer framework (which all viewers share) and gives an overview of
available viewer types.

6.2.1 Viewer framework
There are three main layers (represented by abstract classes) found within the eJFace
framework:

� Viewer

This is the most basic layer in the framework that allows for selection processing via the
IInputSelectionProvider interface and defines a common interface to handle input via
IInputProvider.

� ContentViewer

This layer is responsible for defining the relationship between a viewer, content provider
and label provider. Content providers share the IContentProvider interface and are
responsible for working with the input. Label providers share the IBaseLabelProvider
interface which maps a model element to an optional image and optional string.

� StructuredViewer

This layer adds support for viewer utilities such as filters and sorters.

6.2.2 Viewers
The main use of the Viewer abstract class is to identify the input of the model and selection
processing. A common input is a file (the input can be anything). The input is manipulated via
the following methods:

� setInput(Object input)

Sets the input of the model.

� getInput()

Returns the input of the model.

It is also possible to obtain the selection of the viewer via the method:

� getSelection()

Returns the current selection.

Note: IStructuredSelection is used when a selection contains many elements.
Chapter 6. eJFace applications 117

6.2.3 Content viewers
The two most important aspects of a content viewer are the concepts of a content provider
and a label provider.

Content Providers
Content providers are responsible for manipulating the input. To work with the input you have
to set a content provider via the setContentProvider(IContentProvider provider) method.

Content providers must adhere to the structure of the widget that they represent. For
example, for a list, the content provider represents a flat structure and does not care about
parent-child relationships that are found in trees. For this reason, there exists two content
providers based on your viewer: IStructuredContentProvider and ITreeContentProvider.
The usage rule for these two content providers is simple: if your viewer is tree-based, use
ITreeContentProvider; otherwise, use IStructuredContentProvider. For example:

� IStructuredContentProvider

– CheckboxTableViewer
– ComboViewer
– ListViewer
– TableViewer

� ITreeContentProvider

– CheckboxTreeViewer
– TreeViewer

Label providers
Label providers are responsible for adorning model elements with text or an image. They are
manipulated via the following the methods:

� setLabelProvider(IBaseLabelProvider provider)

Sets the label provider. Note that label providers are dependent on the type of viewer.

� getLabelProvider()

Returns the label provider

Label providers, similar to content providers, must adhere to the structure of the widget that
they represent. The following are the types of label providers and the corresponding viewer
that they represent:

� ILabelProvider

– CheckBoxTreeViewer
– ComboViewer
– ListViewer
– TreeViewer

� ITableLabelProvider

– CheckboxTableViewer
– TableViewer
118 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

6.2.4 Structured viewers
Structured viewers allow for users to sort and filter the content in their specified model.
Filtering model elements can be a very powerful usability feature for the user and structured
viewers allow you to add unlimited filters to your viewer. Structured viewers also provide the
ability to add a sorter to the viewer to aid the display of model elements. It is also possible to
add label decorators to further enhance the usability of your viewer.

Filtering
All filters must extend the ViewerFilter abstract class. Filtering is provided via the following
methods:

� addFilter(ViewerFilter filter)

Adds a filter to the list of filters

� removeFilter(ViewerFilter filter)

Removes a filter from the list of filters

Example 6-1 filters out elements that are not of ISpecialType.

Example 6-1 Filter: Only allow IType elements

ViewerFilter typeFilter = new ViewerFilter() {

public boolean select(Viewer viewer, Object parentElement, Object element) {
if(element instanceof IType) { return true; }
return false;

}

public boolean isFilterProperty(Object element, String property) {
return true;

}

};
viewer.addFilter(typeFilter);

Sorting
All sorters must extend the ViewerSorter abstract class. Sorting is provided via the following
methods:

� setSorter(ViewerSorter sorter)

Sets the sorter for the viewer

� getSorter()

Returns the sorter for the viewer

Example 6-2 sorts two types of elements: IType and ISpecialType. It gives priority to
ISpecialType instances so that they are displayed first.

Example 6-2 A sorter that gives priority to ISpecialType instances

ViewerSorter sorter = new ViewerSorter() {

public int category(Object element) {
if(element instanceof ISpecialType)

return 0;
return 1;

}

Chapter 6. eJFace applications 119

public boolean isSorterProperty(Object element, String property) {
return true;

}

};
viewer.setSorter(sorter);

Label decorators
A decorating label provider allows one to combine a nested label provider with an optional
label decorator. All decorating label providers must implement the ILabelDecorator interface
and be instantiated using the DecoratingLabelProvider class. Example 6-3 enhances a
previous label provider by adding an annotation if the element is modified.

Example 6-3 A label decorator example

ILabelDecorator decorator = new ILabelDecorator() {
 ...

public String decorateText(String text, Object element) {
 if(element instanceof IModifiableElement) {
 if (((ModifiableElement)element).isModified()) { text = "* " + text; }

}
}

 ...
};

viewer.setLabelProvider(new DecoratingLabelProvider(provider,decorator));

6.2.5 Viewer types

The following viewer types are included in eJFace:

� CheckBoxTableViewer

A viewer that allows check boxes to adorn each TableItem.

� CheckBoxTreeViewer

A viewer that allows check boxes to adorn each tree node.

� ComboViewer

A simple viewer that is used as an alternative to the ListViewer. It displays its content in a
combo box rather than a list.

� ListViewer

A simple viewer that is used as an alternative to the ComboViewer. It displays its content in
a list rather than a combo box.

� TableViewer

A simple viewer that is used in conjunction with the Table control.

� TreeViewer

A simple viewer that is used in conjunction with the Tree control.

Note: A difference between eJFace and JFace is that eJFace lacks a TableTree.
120 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

6.3 Operations
There is only one important operation class within eJFace. ModalContext is used to facilitate
modal operations. The two most important methods in this class are:

� run(
IRunnableWithProgress operation,
boolean fork,
IProgressMonitor monitor,
Display display)

Runs a modal operation with an associated progress monitor

� runInCurrentThread(
IRunnableWithProgress runnable,
IProgressMonitor progressMonitor)

Runs a modal operation with associated progress monitor in the same thread.

6.4 Resource management
eJFace provides a method to manage resources via a convenience class, JFaceResources.
Fonts, colors, and images are managed by this class using the concept of a registry.

The following methods are used to manage these resources:

� JFaceResources.getColorRegistry()

Returns the color registry. If no registry is present, one is created.

� JFaceResources.getFontRegistry()

Returns the font registry. If no registry is present, one is created.

� JFaceResources.getImageRegistry()

Returns the image registry. If no registry is present, one is created.

The usage of these registries are similar through the use of getters and setter methods.
Example 6-4 stores an image into a ImageRegistry and retrieves it.

Example 6-4 ImageRegistry Usage

JFaceResources.getImageRegistry().put(“key”,image); // store image into registry
Image myImage = JFaceResources.getImageRegistry().get(“key”);

Note: Normally, when creating a resource with eSWT, you are responsible for disposing it.
By using JFaceResources for your resource management, you save the trouble of having to
dispose your resources.

Tip: For convenience reasons, it is possible initialize default values into the image registry
by using the initializeImageRegistry(ImageRegistry reg) method found in
AbstractUIPlugin.

Note: If you need further management of your resources, you can use
LocalResourceManager to share local resources with a global registry.
Chapter 6. eJFace applications 121

6.5 Preferences
Preferences provide a method to manage information that is associated with an application.
They are commonly used in dialogs as a way to persist information. The preference
infrastructure also provides the ability to listen to preference changes and to react to them
appropriately.

6.5.1 Preference storage
Preferences are manipulated through a preference store. The plug-in class manages the
preference store. Example 6-5 manipulates the preference store by adding a value.

Example 6-5 Manipulating the preference store

Activator.getDefault().getPreferenceStore().putValue(“download.dir”, “C:\downloads”);
String home = Activator.getDefault().getPreferenceStore().getString(“home.dir”);

If you want to listen to value changes, the first step is to develop a listener that implements
the IPropertyChangeListener interface. The final step is to then attach that listener to the
preference store via the addPropertyChangeListener(IPropertyChangeListener listener)
method.

It is also possible to set default values on properties. The preference store provides a series
of setDefault() methods to handle each type of persisted value.

6.5.2 Preference dialogs
Preference dialogs allow you to manipulate data that is found within a set of preference
pages. Preference pages represent information found within a preference store. In order to
use preference dialogs, you need to first create and define preference pages using the
org.eclipse.ui.preferencePages extension point. Example 6-6 lists a sample preference
page extension definition.

Example 6-6 An example preference page definition

<extension
 point="org.eclipse.ui.preferencePages">
 <page
 class="org.eclipse.ercp.sample.preferences.DefaultPage"
 id="org.eclipse.ercp.sample.preferences.defaultPage"
 name="Default Preference Page"/>
 <page
 category="org.eclipse.ercp.sample.preferences.ExtPage"
 class="org.eclipse.ercp.sample.preferences.ExtPage"
 id="org.eclipse.ercp.sample.preferences.defaultPage"
 name="Additional Preference Page"/>
 </extension>
122 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

After your preference pages are created and defined in the preference page extension point,
you can launch them by using the PreferencesUtil convenience class (Example 6-7).

Example 6-7 Launching a preference dialog

PreferenceDialog dialog = PreferencesUtil.createPreferenceDialogOn(
shell,
“org.eclipse.ercp.sample.preferences.DefaultPage”,
null,
null);

dialog.open(); // open the preference dialog and wait for user input
Chapter 6. eJFace applications 123

124 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Chapter 7. eRCP eWorkbench

This chapter provides a detailed description of embedded Rich Client Platform (eRCP)
eWorkbench and how to develop applications targeted for it.

7

© Copyright IBM Corp. 2006. All rights reserved. 125

7.1 Introduction
In Eclipse, the concept of a workbench was defined as the feature that controls where
applications (views) are displayed. In eRCP eWorkbench mimics Eclipse but makes the
modifications that are needed for mobile devices. eWorkbench extends plug-ins to contribute
views based on common device display types. The conceptual difference between
eWorkbench and the Eclipse workbench is that eWorkbench has no concept of perspectives.

This chapter focuses on how to develop an application for the eWorkbench.

7.2 Developing for the eWorkbench
There are three basic steps that you need to follow in order to develop an eWorkbench
application:

� Creating your plug-in
� Defining your views
� Defining your application

7.2.1 Creating your plug-in
The first step of defining a proper eWorkbench application (or any Eclipse-based application)
is to create your plug-in. The most common way to do this is to use the plug-in wizard in
Eclipse’s plug-in development environment (File → New → Plug-in Project). This wizard
generates the needed files for you automatically.

The key point is that your plug-in class extends either Plugin or AbstractUIPlugin,
depending on the functionality that required, and it must be defined properly in the
MANIFEST.MF (Example 7-1). In this case, our plug-in class (also referred to as a bundle)
has to be defined in the Bundle-Activator attribute of the manifest.

Example 7-1 A sample MANIFEST.MF with a properly defined plug-in

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: IBM eRCP Sample Application
Bundle-SymbolicName: com.ibm.ercp.application;singleton:=true
Bundle-Version: 1.0.0
Bundle-ClassPath: .
Bundle-Activator: com.ibm.ercp.application.Activator
...
126 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

7.2.2 Defining you views
eWorkbench allows you to define a few types of views that eWorkbench will use automatically,
depending on the device on which your application is running. The different types of views
are:

� Normal

The default view that is used for your application that is required for all eWorkbench
applications.

� Large (optional)

The view used for larger display devices. It is optional.

� Status (optional)

The view that is used for small display devices (such as the status screen of a cell-phone).
It is optional.

After you have decided which views that you would like to support, the next step is to
implement these views. All the views extend org.eclipse.ui.ViewPart as their base class
(this holds true for views defined within the normal Eclipse workbench). Example 7-2 shows a
normal view that serves as a Hello eWorkbench application.

Example 7-2 A sample normal view for eWorkbench

public class NormalView extends ViewPart {

public void createPartControl(Composite parent) {
Composite composite = new Composite(parent, SWT.NONE);
composite.setLayout(new FillLayout());

Label label = new Label(composite, SWT.CENTER);
label.setText("Hello eWorkbench");

}
...
}

After you implement the views that you need, the next step is to define these views in the
plugin.xml so that eRCP can be aware of them. You can implement these views via the
org.eclipse.ui.views extension point. Example 7-3 shows a view that is defined using the
common contribution mechanism of Eclipse extension points.

Example 7-3 A sample eRCP view definition (plugin.xml)

<extension
 point="org.eclipse.ui.views">
 <view
 allowMultiple="false"
 category="org.eclipse.ercp.eworkbench.viewCategory"
 class="com.ibm.ercp.application.views.NormalView"
 icon="icons/sample.gif"
 id="com.ibm.ercp.application.normalView"
 name="Sample eWorkbench Normal View">
 </view>
</extension>

After these steps are complete, everything is in place to let eWorkbench know how to launch
your application.
Chapter 7. eRCP eWorkbench 127

7.2.3 Defining your application
In order for eWorkbench to launch applications, it needs to be aware of them first. The
process to accomplish this task is very similar to how an application is defined in Rich Client
Platform (RCP). All eWorkbench applications must contribute to the
org.eclipse.ercp.eworkbench.applications extension point. The structure of the extension
point (for each eWorkbench application) is as follows:

� id

The unique identifier that represents your application.

� name

The name of your application that is displayed in the eWorkbench application list.

� views (normal, large, status)

The views that your application supports.

Example 7-4 shows a sample eWorkbench application definition.

Example 7-4 A sample eWorkbench application definition (plugin.xml)

<extension
 point="org.eclipse.ercp.eworkbench.applications">
 <application
 id="com.ibm.ercp.application"
 name="IBM Sample Application"
 singleton="true">
 <views normal="com.ibm.ercp.application.normalView"/>
 </application>
</extension>

After all these steps are complete, a subsequent deployment and launch of the eWorkbench
should reveal your new application (Figure 7-1).

Figure 7-1 A sample eWorkbench application

Note: The views that are defined in the application extension point represent the IDs of the
views that are defined in the org.eclipse.ui.views extension point.
128 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Chapter 8. eRCP sample scenario

This chapter provides a sample scenario to illustrate how you develop an embedded Rich
Client Platform (eRCP) application.

8

© Copyright IBM Corp. 2006. All rights reserved. 129

8.1 Preparing the environment
This section provides the steps needed to set up the environment for eRCP application
development. It shows you how to add the required plug-ins for database connectivity. For
this scenario, the target platforms are Win32® and Windows Mobile 2003, although the steps
are very similar for other platforms.

8.1.1 The eRCP development environment
The minimum eRCP development environment consists of the following components:

� Eclipse SDK 3.1.x
� A supported JRE
� The eRCP runtime

In this scenario, we used Eclipse SDK 3.1.2 for Win32 and the Java JRE 1.4.2 as the Eclipse
JRE. You can download Eclipse SDK 3.1.2 for Win32 from the Eclipse site at:

http://www.eclipse.org

You can download Java JRE 1.4.2 as the Eclipse JRE from the Java site at:

http://java.sun.com

Regarding the eRCP runtime, eRCP Milestone 7 (M7) is used. You can download the
runtimes from the eRCP site at:

http://www.eclipse.org/ercp

For the M7 version, there are three supported platforms:

� Windows Mobile 2003 (WM2003)
� Windows Desktop (Win32)
� Nokia Series 80

Notice that eRCP support is available for Windows Desktop systems. This is very useful
because it allows you to run and test your application on a Windows system without the need
to use a WM2003 device. However, for application deployment you use the WM2003 runtime.

You are probably wondering what Java Runtime Environment you use on the WM2003
device. For small devices there is an entirely different specification of the Java platform called
Java 2 Micro Edition (J2ME). Because small devices capabilities vary greatly, they have
divided J2ME into configurations and profiles, which are basically subsets of the Java 2
Standard Edition (J2SE) specification, based on the device capabilities. A detailed discussion
about J2ME is out of the scope of this document. For more information, refer to the following:

http://java.sun.com/j2me

For WM2003, you use a Foundation Profile implementation part of the IBM Workplace™
Client Technology, Micro Edition for Windows product.

Note: You can download a trial version of Workplace Client Technology™, Micro Edition
from the product site at:

http://www.ibm.com/software/wireless/wctme/
130 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

http://java.sun.com
http://www.eclipse.org
http://java.sun.com/j2me
http://www.eclipse.org/ercp
http://www.ibm.com/software/wireless/wctme/

To summarize this scenario, you need the following software:

� Eclipse SDK 3.1.2 + JRE 1.4.2

� J2ME Foundation Profile (part of Workplace Client Technology, Micro Edition) for Win32
and WM2003

� eRCP runtime for Windows Desktop and WM2003

8.1.2 Installing the Eclipse SDK
Before installing the Eclipse SDK 3.1.2, you need to install JRE V1.4.2. You can download it
from:

http://java.sun.com

Follow the instructions to install the JRE in your machine. You can find information about
suggested JRE for Eclipse 3.1.2 at:

http://download.eclipse.org/eclipse/downloads/drops/R-3.1.2-200601181600//
java-runtimes.html

You can download the Eclipse SDK from the Eclipse site at:

http://www.eclipse.org

The Eclipse SDK 3.1.2 for Windows is packaged as a zipped file named
eclipse-SDK-3.1.2-win32.zip. To install this file, follow these steps:

1. Unzip the file to a directory, for example c:\eclipse.

2. Locate the eclipse.ini file on the root directory, c:\eclipse in the example. Modify the file to
fit best your environment. You might modify the maximum amount of memory that Eclipse
takes, as denoted by the Xmx parameter. In general, you adjust this value to give Eclipse
enough memory to play without reaching the system limits. For example, in your
development environment with 1 GB RAM machines, 512 MB for Eclipse would be fine.
There are other parameters to adjust, but they are only worth modifying if you have
performance problems with your development environment.

3. By default, if you launch Eclipse using eclipse.exe, it uses the system JRE. A better
approach when you have multiples JREs is to specify which one you want Eclipse to use.
You can do this by creating a Windows shortcut for the eclipse.exe launcher and adding
the -vm parameter to it. For example:

c:\eclipse\eclipse.exe -vm C:\Program Files\Java\j2re1.4.2_11\javaw

You can also place the shortcut in your Windows desktop for easy access.

Why do I need the J2ME Foundation profile for Win32?

As you have seen, you have the JRE1.4.2 for Windows in place, so why do you need the
Foundation Profile for Win32? J2ME profiles are subsets of the J2SE specification. If you
use J2SE (and the JRE 1.4.2 is a J2SE implementation) to develop the application in the
desktop, you are at the risk of using classes that are not actually part of the selected J2ME
profile, without being aware of it. So, if you are wondering why the application that was
working perfectly on the desktop is throwing ClassNotFoundException errors when running
on the device, it is recommended to use the Foundation Profile in both environments,
desktop and device. Workplace Client Technology, Micro Edition provides
implementations for both.
Chapter 8. eRCP sample scenario 131

http://java.sun.com
http://download.eclipse.org/eclipse/downloads/drops/R-3.1.2-200601181600//java-runtimes.html
http://www.eclipse.org

4. Launch the Eclipse SDK. Click OK to accept the default workspace location. If everything
is fine, you have the screen shown in Figure 8-1.

Figure 8-1 Eclipse SDK installed

8.1.3 Installing Workplace Client Technology Micro Edition for Windows
You need to install the Foundation Profile for Win32 and WM2003. They come as part of
Workplace Client Technology Micro Edition for Windows. You can download a trial copy from:

http://www.ibm.com/software/wireless/wctme

To install the product to get the Foundation Profile libraries, follow these steps:

1. Unzip the zipped file to a temporary folder, for example c:\temp. Start launchpad.exe.

2. Click Install WebSphere Studio Device Developer. Wait while the installer loads.

3. Click Next on the Welcome screen.

4. Select I accept the terms in the license agreement and click Next.

5. The installer presents the location to install the program, for example C:\Program
Files\Device Developer. Write down this location. You will need it later. Click Next.

6. Click Next in the summary window. Wait while the product is installed.

7. Click Finish to end the installation.

Note: In the trial download Web page there are several components. You must download
the complete package. It appears under the Workplace Client Technology Micro Edition for
Windows header (which contains all component products and tools) . The file to download
is windows_cd.zip.
132 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

http://www.ibm.com/software/wireless/wctme

The Foundation profiles for each platform are located under the WebSphere Studio Device
Developer directory (the one that you wrote down in the previous steps). For example:

� \wsdd5.0\ive-2.2\runtimes\win32\x86\foundation10 for Win32
� \wsdd5.0\ive-2.2\runtimes\wm2003\arm\foundation10 for WM2003

8.1.4 Installing the eRCP runtimes
You can download the eRCP runtime packages from the eRCP site at:

http://www.eclipse.org/ercp

In this book, we use the Milestone 7 (M7) version. They are packaged as zipped files. For
eRCP M7, you have to download the following:

� eRCP-v20060118-1017.win32-x86.zip (Win32 runtime)
� eRCP-v20060118-1017.wm2003.zip (WM2003 runtime)

For this scenario, you should unzip the runtimes in a structure similar to the one shown in
Figure 8-2. This structure is used for the remainder of this chapter.

Figure 8-2 eRCP runtimes

8.1.5 Database support for small devices
To develop database-oriented applications on mobile devices, you need the following
components:

� DB2 Everyplace database engine
� DB2 Everyplace JDBC™ drivers
� JDBC Optional Package for Foundation Profile (JSR 169)

DB2 Everyplace database engine
The DB2 Everyplace database engine is composed of a native library for each supported
platform. For Win32 and WM2003 the library is the DB2e.dll file. The native library must be
available to the application on the java.library.path location.

DB2 Everyplace JDBC drivers
The DB2 Everyplace JDBC drivers are composed of two files: a native library called
DB2EJDBC.dll that, similar to the database engine, is specific for each platform and a JAR
library called DB2e.jar.

The native library must be available to the application on the java.library.path location.
Depending how the DB2e.jar file is packaged, it has to be listed in the application
CLASSPATH or it has to be available as an Eclipse bundle. For this application, you use the
bundle version.
Chapter 8. eRCP sample scenario 133

http://www.eclipse.org/ercp

JDBC optional package for Foundation Profile (JSR 169)
You have seen that the J2ME Foundation Profile is a subset of J2SE and does not include the
java.sql and javax.sql packages. Because many applications for small devices need to use a
database, a JSR was created that specifies a subset of the JDBC 3.0 standard. The final
result is named JDBC Optional Package for Foundation Profile or JSR 169 for short. So, you
need an implementation of JSR 169.

8.1.6 Installing Workplace Client Technology, Micro Edition database
components

There are several places to obtain the components that we have mentioned. If you have
downloaded the complete Workplace Client Technology, Micro Edition package as
recommended, you already have all the components in place. They are part of the Workplace
Client Technology, Micro Edition Toolkit for Device Developer.

To have the components available, you need to install the Workplace Client Technology,
Micro Edition Toolkit on Device Developer. Follow these steps:

1. Start WebSphere Studio Device Developer. Click OK to accept the default location for the
workspace.

2. Select Help → Software Updates → Update Manager.

3. In the Update Manager perspective, go to the Features Updates view and expand the
directory where you have extracted the Workplace Client Technology, Micro Edition
package (for example D:\temp\wctme_windows_cd). The toolkit should be there.

4. Expand the toolkit to see the toolkit’s components as shown in Figure 8-3.

Note: You can also download a trial version of DB2 Everyplace that comes with the
Synchronization Server. We recommend that you do so if you want to try the database
synchronization capabilities of DB2 Everyplace.
134 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Figure 8-3 Workplace Client Technology, Micro Edition Toolkit

5. Select Extension Services For WebSphere Everyplace → SMF Bundle Development
Kit 5.7.1.

6. In the Preview view on the left, select Install by adding to the Selected Updates. Note
the feature has been placed in the Selected Updates view.

7. Repeat the outlined procedure for the Extension Services 5.7.1 and JSR 169 (BETA) for
Extension Services 5.7.1 features.

You should have three features listed in the Selected Updates view.

8. Right-click any place inside the view and select Process All, as shown in Figure 8-4.

Figure 8-4 Installing the selected updates at once
Chapter 8. eRCP sample scenario 135

9. The Update task dialog lists the features to be installed. Click Next.

10.Select I accept the terms in the license agreements and click Next.

A summary of the features to be installed is shown.

11.Click Finish to begin the install.

12.For each feature, a warning dialog indicates that you are about to install an unsigned
feature, as shown in Figure 8-5. This is fine. Click Install to install the feature.

Figure 8-5 Warning about unsigned features

13.Wait while the features are installed. At the end, click Yes to restart the workbench. After
the workbench is restarted, close it.

8.1.7 Configuring the environment to use the database components
Now that you have all the components installed in the development machine, you need to
place the database components in the right place.

Configuring the JRE to find the DB2 Everyplace native libraries
You need to include the DB2 Everyplace engine and the JDBC driver native libraries in the
java.lib.path location. The bin directory of the JRE that is used to run the application is added
by default to the java.lib.path, so you can copy the natives libraries there.

This section describes how to update the Win32 JRE. The steps to update the WM2003 JRE
are described in 8.8.3, “Copying the database libraries to the device” on page 220.

Note: Because you have two different platforms — Win32 to develop and test the
application in the desktop and WM2003 to test the application in the device — you need to
update two JREs:

� The Win32 JRE that is used by Eclipse.
� The WM2003 JRE that is used by the mobile device.
136 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

To update the Win32 JRE, follow these steps:

1. Locate the DB2 Everyplace natives libraries for the Win32 platform. They should be
located in the Device Developer directory. For example:

C:\Program Files\IBM\DeviceDeveloper\wsdd5.0\technologies\eswe\files\db2e\win32\x86

They are:

– DB2e.dll, the DB2e engine
– DB2EJDBC.dll, the DB2e JDBC driver native support

2. Copy the libraries to the bin directory of the JRE used by Eclipse (for example at
C:\Program Files\Java\j2re1.4.2_11\bin).

Configuring eRCP to use the database Java libraries

The DB2e JDBC driver and the JDBC Optional Package for Foundation Profile (JSR 169) that
are provided with Workplace Client Technology, Micro Edition are already packaged as OSGi
bundles. So, you can copy them directly to the eRCP plug-ins directory. The libraries are the
same for WM2003 and Win32. Follow these steps for both platforms:

1. Locate the DB2 Everyplace Java and JSR169 libraries. They should be located in the
Device Developer directory. For example:

C:\Program Files\IBM\DeviceDeveloper\wsdd5.0\technologies\eswe\bundlefiles

They are:

– DB2e.jar, the DB2e JDBC driver
– jdbc.jar, the JSR169 package

2. Copy the libraries to the plug-ins directory of each eRCP platform. For example copy the
libraries to:

– C:\eRCP-v20060118-1017\win32\eRCP\plugins, for Win32
– C:\eRCP-v20060118-1017\wm2003\eRCP\plugins, for WM2003

8.2 Configuring Eclipse and creating the eRCP project
The configuration procedure that is needed to prepare the environment for eRCP with
database application development is not trivial; however, in most cases, you have to do this
task only once.

This section explains how to configure Eclipse and to create the project necessary to develop
and to test an eRCP application using the configured environment.

Note: There are another two files in the DB2e native libraries directory: CryptoPlugin
and DB2eODBC. CryptoPlugin is necessary if you want to use the DB2e database local
encryption feature. DB2eODBC is the DB2e ODBC driver and is not intended to be
used in Java environments unless you want to use the JDBC-ODBC bridge to connect
to the database. We strongly discourage this.

Note: Most of the configuration tasks that you perform in this section are
workspace-scoped, which means that if you change the workspace to a different location,
you will need to repeat the tasks in this section.
Chapter 8. eRCP sample scenario 137

8.2.1 Configuring eRCP as the Eclipse target platform
First, you need to set eRCP as the Eclipse target platform. By default the Eclipse target
platform is Eclipse itself. So, you need to tell Eclipse that the target platform is eRCP. Follow
these steps:

1. Start Eclipse if not already started. Choose a location for the workspace and click OK.

2. Select Window → Preferences from the menu bar.

3. In the Preferences window, select Plug-in Development → Target Platform. Because by
default the target platform is Eclipse itself, the Location entry has the Eclipse directory root
(for example c:\eclipse), as shown in Figure 8-6. In this environment, the Eclipse SDK
loads around 334 plug-ins.

Figure 8-6 Eclipse Target Platform

4. Click Browse to change the target platform to eRCP. Navigate to the eRCP for Win32 root
directory (for example C:\eRCP-v20060118-1017\win32\eRCP). Note that the number of
plug-ins has been reduced to only 18 plug-ins, as shown in Figure 8-7 on page 139. Note
also that the DB2e JDBC and JSR169 have been loaded.

Note: The number of plug-ins in a Eclipse installation varies in function of the number
of additional features installed.

Tip: The Reload button, shown in Figure 8-7 on page 139, is useful to make effective
changes immediately into the eRCP platform (for example, when you have added new
plug-ins). Also, it is useful as a general troubleshooting technique, together with the
Project → Clean option from the Eclipse menu bar, when you get obscure compilation
errors about classes that could not be found.
138 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Figure 8-7 eRCP Runtime as the Eclipse Target Platform

5. Click OK to accept the changes.

8.2.2 Adding Foundation Profile as an Eclipse JRE
When developing mobile applications, it is good practice to use the same JRE in both the
development machine and the target device. Because, for WM2003 devices, you are using
the Foundation Profile, you also need to add the Foundation Profile as an additional Eclipse
JRE. Follow these steps:

1. Start Eclipse if not already started. Select the workspace location and click OK. Select
Window → Preferences from the menu bar.

2. In the Preferences window, select Java → Installed JREs. The Installed JREs window
lists the JREs already configured to work with Eclipse. You need to add Foundation Profile
as a new one. Click Add.
Chapter 8. eRCP sample scenario 139

3. Click Browse to search for the location of the Eclipse JRE, for example C:\Program
Files\Java\j2re1.4.2_11. The default JRE libraries are loaded, because the Use default
system libraries option is selected, as shown in Figure 8-8. You need to remove them and
to specify that you want to use the libraries that are provided by the Foundation Profile.

Figure 8-8 Adding a new JRE

4. Deselect Use default system libraries. Select all the libraries that are loaded by default
and click Remove.

5. Click Add External JARs. Select the Foundation profile library for Win32 at the Device
Developer directory, for example:

C:\Program Files\IBM\DeviceDeveloper\wsdd5.0\ive-2.2\runtimes\win32\x86\
foundation10\lib\jclFoundation10

The library is called classes.zip.

6. Enter a name for the JRE, for example Foundation Profile JRE. The window should look
similar to the one shown in Figure 8-9. Click OK.

Figure 8-9 Foundation Profile JRE added

7. Click OK to close the Installed JREs list.
140 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

8.2.3 Creating the ITSO Mobile Store project
Now that you have the eRCP target platform loaded and the Foundation Profile as an Eclipse
JRE, you can begin creating the application project. Because an eRCP application
contributes to the eRCP platform, it needs to be developed as an Eclipse plug-in. Therefore,
all the development work is done in the Eclipse plug-in Development perspective. Follow
these steps:

1. Start Eclipse. Select the location for the configured workspace and click OK.

2. Select Window → Open Perspective → Other to show all the perspectives available.
Select Plug-in Development and click OK.

3. Select File → New → Project from the menu bar. Select Plug-in Development →
Plug-in Project and click Next.

4. Enter a name for the project, for example com.ibm.itsoral.ercpcasestudy.mobilestore.
Leave all the other options on its default values and click Next.

5. Enter the information for the new plug-in. Use the information that is provided in
Figure 8-10. Click Finish.

Figure 8-10 Creating the ITSO Mobile Store project

6. The wizard creates the project and opens the plug-in descriptor.
Chapter 8. eRCP sample scenario 141

Figure 8-11 Plug-in descriptor editor

The Overview section of the descriptor holds general information about the plug-in such as its
name, provider, activator class, and so on, as shown in Figure 8-11. There are other sections
in the descriptor that hold information about dependencies with other plug-ins, extensions
contributed to the platform, build information, and so on. The descriptor is divided in two the
files, the META-INF/MANIFEST.MF file and the plugin.xml file.

The plugin.xml file holds the extensions contributed for the plug-in to the running platform
(eRCP in this case) and the MANIFEST.MF file holds all other information, except the build
information that is kept in the build.properties file.

You have probably noticed that there are several error messages in the Problems view that
refer to classes that cannot be resolved. This situation occurs because the wizard does not
add all the required dependencies for the plug-in when the project is created. You can fix this
by following these steps:

1. Open the MANIFEST.MF file if not already open. Select the Dependencies tab. You need
to add the required dependencies here. You can add them by importing the entire required
plug-in or by selecting the packages that they export.

2. On the Imported Packages section, click Add. In the Package Selection window select all
the packages that begin with org.eclipse.ui, org.eclipse.core, org.eclipse.ercp,

Note: The plugin.xml file is created automatically by Eclipse when an extension is added
using the plug-in descriptor editor, as shown in Figure 8-11.

Note: Generally, you should use the Imported Package method instead the Required
Plug-in method if you want to isolate your application from changes in how the plug-in
provider packages its classes. For example, when you are working with a Milestone
Version of the eRCP platform, you could expect that the packaging will be changed in a
future release. Therefore, it is a good practice to import the eRCP classes using the
Imported Package method. The DB2e and JSR 169 bundles are not expected to
change. Therefore, it is preferred to use the Required Plug-in method in this case.
142 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

org.eclipse.jface, and org.eclipse.swt, except the ones that contain the internal word, and
click OK. The packages should be listed in the Imported Packages section, as shown in
Figure 8-12.

Figure 8-12 Importing the eRCP packages

3. On the Required Plug-ins section, click Add. In the Plug-in Selection window, select
com.ibm.db2e (8.1.4) and com.ibm.eswe.jdbc (3.0.0) and click OK. The plug-ins should
be listed in the Required Plug-ins as shown in Figure 8-13.

Figure 8-13 Adding the DB2e bundles as required plug-ins

4. Save the file. The errors that are related to the missing classes are gone.

8.3 Designing the ITSO Mobile Store application
In this section, the sample application design is described as well as what patterns and usage
are useful for a specific situation or problem.

8.3.1 ITSO Mobile Store architecture
ITSO Mobile Store is a data-driven application that is not so different to the one that you
develop for the desktop. Although the application is designed with a mobile device in mind —
and mobile devices have limited resources such as memory, CPU power, screen size,
different input methods and so on — we think that many software design patterns still apply.
So the first pattern that we applied to the application design is the Layer pattern. The
application is divided into in several layers, implemented as Java packages, grouping classes
Chapter 8. eRCP sample scenario 143

with similar responsibilities according to the high cohesion pattern and decoupling them from
the other layers using interfaces according to the low coupling pattern. Figure 8-14 shows the
layer division as well their dependencies.

Figure 8-14 Application layers

The application is divided into several layers and the dependencies between them are well
defined. This package division is similar to the ones found in larger applications. The good
thing about patterns is that they are applicable to several application types. We describe each
layer in the sections that follow.

8.3.2 Enterprise Resources layer
The Enterprise Resource layer is composed of all the classes that allow connectivity to the
enterprise resource systems, such as databases, messaging systems, and so on. The only
external resource in the application is the database. For the ITSO Mobile Store, there is only
one class in charge of the local database connectivity: DatabaseManager. This class
centralizes the connection to the database and keeps the current local database location.
This class follows the Singleton pattern.
144 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

8.3.3 Domain layer
The Domain layer contains the classes that represent the problem domain. Because this a
store application, you would expect to find things such as orders, products, customers, and so
on. Figure 8-15 shows the classes that compose this layer and their relationships.

Figure 8-15 Domain layer

The classes for this layer are as follows:

� Customer

Holds information about a customer, including name, birth date, and so on. Each customer
can have up to two addresses as depicted in Figure 8-15.

� Location

Holds information about a particular location inside the U.S. and is used primarily to keep
the business and shipping addresses of a particular customer.

� Order

Holds information for orders. Each order belongs to a customer and contains several line
items for each product in the order. It has derived attributes to calculate the subtotal, tax,
shipping, and total for the order. In addition, it has the responsibility of taking care of the its
line item objects.

Note: Not every attribute and methods are shown in this diagram. For example, the
accessor methods (setters and getters) are not included. Also notice that in this diagram
you see attributes with public or protected visibility, but it does not mean that in the code
they are instance variables with public or protected access (a very bad practice by the
way). Instead, it means that these attributes have public or protected accessors (getters
and setters). Also note that the attributes with a slash character (/) as a prefix are
calculated according to the UML standard. Using this type of UML style reduces the clutter
in the diagram and, at the same time, shows the important aspects of each class.
Chapter 8. eRCP sample scenario 145

� LineItem

Holds information for a particular line item inside an order. Note that a line item keeps
track of the product price when the order was created.

� Product

Holds information about the products available for purchasing using the ITSO Mobile
Store application.

8.3.4 Data Access Objects layer
The Data Access Objects (DAO) layer provides several objects with create, retrieve, update,
and delete (CRUD) operations that close the gap between the domain model and its
persistent representation, database tables. The persistency is implemented using direct
JDBC calls to the database. Figure 8-16 shows the interfaces and classes in this layer.

Figure 8-16 DAO Layer

The DAO layer exposes its functionality as interfaces. The jdbcimpl package contains the
classes that implement the interfaces using JDBC calls. The mapping between the interface
and a particular implementation is done by a factory class called DAOFactory. The main
interfaces and classes of this layer are as follows:

� ProductDAO

Declares one method, findAll(), which returns all the products that are available for
shopping.

� CustomerDAO

Declares two methods:

– findAll() returns all the customers that can place orders
– update() updates the customer information in the database

� OrderDAO

Exposes a create() method that adds a new order and all its associated line items to the
database.
146 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

� StandaloneDAO

Exposes a populate() method that is used to create the underlaying database and
populates the tables with data.

� ConfigDAO

Exposes a findByName() method that is used to get values for a particular name. For
example, give the STATE name provides values such as NC, NY, and so on.

� BaseDAO

Provides a common base for all the interfaces in the DAO layer.

� DAOFactory

Follows the Singleton pattern and maps the interfaces with their implementations. Each
DAO implementation is mapped as a constant in the class. The getDAO() is the constant
as a parameter and provides an instance of the DAO. The return type for getDAO() is
BaseDAO.

8.3.5 Services layer
The Business Services layer provides interfaces that contain methods that carry on the
application business logic. Also, it serves as a facade between the presentation layer and
lower level layers, isolating the presentation layer from the complexities of the underlaying
layers, achieving low coupling, and making possible to change the technology used in the
presentation layer, if it is required.

Figure 8-17 shows the main interfaces and classes for this layer. Notice that as part of the
layer, we provide an implementation on the interfaces in the impl package. If you review the
code of the implemented services, you note that we are using the dependency injection
pattern, also called inversion of control, to provide the required DAO instances to the
services classes. For ITSO Mobile Store, the dependencies are injected in the
ServiceFactory class using code.

Note: For more details about the implementation, refer to the source code that is provided
in Appendix A, “Additional material” on page 225. For information about how to import this
code, see 8.3.7, “Importing the ITSO Mobile Store code” on page 149.

Note: A better approach could be to declare the dependencies in some kind of application
descriptor. In fact, there are several good Inversion of Control frameworks available that
perform that task and that provide several other services. You could use them provided
that you could tailor them to the J2ME environment. For mobile devices, you can use the
Spring framework, using properties files (instead of the more popular XML files) to declare
the dependencies. You can find more information about the dependency injection pattern
in the Martin Flower’s site at:

http://www.martinfowler.com/articles/injection.html

You can find more information about the Spring framework at:

http://www.springframework.org/
Chapter 8. eRCP sample scenario 147

http://www.martinfowler.com/articles/injection.html
http://www.springframework.org/

Figure 8-17 Service layer

The main interfaces of this layer are as follows:

� ConfigService

Holds the methods that are needed to access to the configuration information and the
parameters for the application.

� CustomerService

Holds the methods that are related to managing customer information.

� OrderService

Provides methods that are used to manage orders.

� ProductService

Holds the methods that are related to retrieving customer information.

� SyncService

Holds the methods that are related to retrieving information from the remote database and
syncing information with the local database. For the sake of simplicity and to avoid the
need to use a DB2 Everyplace Sync Server to test the application, the current
implementation calls the StandaloneDAO to recreate the database using local resources
each time the sync() method is called. Feel free to replace the current implementation
with one that performs a real database synchronization. You can find more information
about the synchronization features of DB2 Everyplace in IBM WebSphere Everyplace
Deployment V6 Handbook for Developers and Administrators Volume I: Installation and
Administration, SG24-7141.

� BaseService

Provides a common base to the different services interfaces.

� ServiceFactory

This factory class, that follows the Singleton pattern, maps the interfaces with an actual
implementation of them. The getService() method takes a parameter with the service
required and returns a BaseService instance that must be casted to the service requested.
148 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

8.3.6 Presentation layer
The Presentation layer contains the GUI that allows the user to interact with the application. It
has been developed using eRCP technologies, eSWT, eJFace, and eWorkbench. Therefore it
is the main focus of this chapter. You see this layer in detail in 8.4, “Developing the
presentation layer using eRCP” on page 150.

8.3.7 Importing the ITSO Mobile Store code
Now, you need to import the code for the layers, except the presentation one.

Locate the itsomobilestore_src_no_presentation.zip file in the \ercpcasestudy directory in
additional materials and follow these steps to import it:

1. Start Eclipse. Open the ITSO Mobile Store project created in 8.2.3, “Creating the ITSO
Mobile Store project” on page 141.

2. Right click the project and select Import. Select Archive and click Next.

3. Click Browse in the From archive file field and locate the
itsomobilestore_src_no_presentation.zip file.

4. In the Into folder field enter a backslash (/), select Overwrite existing resources
without warning, and click Finish, as shown in Figure 8-18.

Figure 8-18 Importing the ITSO Mobile Store code

5. Take a look at the code, it implements the design that is outlined in 8.3, “Designing the
ITSO Mobile Store application” on page 143.
Chapter 8. eRCP sample scenario 149

8.4 Developing the presentation layer using eRCP
Now that you have the code for all the layers in place, you can begin developing the
presentation layer using eRCP. However, first we explain how this layer is divided as
illustrated in Figure 8-19.

Figure 8-19 Presentation packages

The views package contains all the view objects. The dialogs package contains the dialogs
that are used in the application. The preferences package contains the page used to
contribute to the eWorkbench preferences subsystem. The command package contains
classes used to manage the eSWT Mobile Extension Command objects used in the
application. The resources package contains some images and finally the util package
contains utility classes that are used in all the other packages. This section discusses these
artifacts in great detail.

8.4.1 The command package
A command represents an action that an user can trigger in the user interface. Each
command is associated to an specific element in the user interface and is visible when the
bond user interface element or its parent has the focus. In Win32 and WM2003 devices, the
commands are implemented as menu elements.

For ITSO Mobile Store, we designed two classes to manage the application commands, as
shown in Figure 8-20.

Figure 8-20 Command package

CommandDescriptor
The CommandDescriptor class holds information about a command. This class has the control
property that indicates the element to which the command belongs, the priority property that
indicates the menu order for the command and the selectionListener property that is the
handler to be invoked when the command is selected.

Follow these steps to create the CommandDescriptor class:

1. Select File → New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.command as the package
150 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

name and CommandDescriptor as the class name. The package is created automatically.
Click Finish.

2. Replace the newly generated class with the code in Example 8-1. Save the changes.

Example 8-1 CommandDescriptor.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.command;

import org.eclipse.swt.events.SelectionListener;
import org.eclipse.swt.widgets.Control;

/**
 * Holds information about a command
 *
 */
public class CommandDescriptor {

private Control control;

private int style;

private int priority;

private String title;

private String longTitle;

private SelectionListener selectionListener;

/**
 * @return Returns the control.
 */
public Control getControl() {

return control;
}

/**
 * @param control The control to set.
 */
public void setControl(Control control) {

this.control = control;
}

/**
 * @return Returns the longTitle.
 */
public String getLongTitle() {

return longTitle;
}

/**
 * @param longTitle The longTitle to set.
 */
public void setLongTitle(String longTitle) {

this.longTitle = longTitle;
}

/**
 * @return Returns the priority.
 */
Chapter 8. eRCP sample scenario 151

public int getPriority() {
return priority;

}

/**
 * @param priority The priority to set.
 */
public void setPriority(int priority) {

this.priority = priority;
}

/**
 * @return Returns the selectionListener.
 */
public SelectionListener getSelectionListener() {

return selectionListener;
}

/**
 * @param selectionListener The selectionListener to set.
 */
public void setSelectionListener(SelectionListener selectionListener) {

this.selectionListener = selectionListener;
}

/**
 * @return Returns the style.
 */
public int getStyle() {

return style;
}

/**
 * @param style The style to set.
 */
public void setStyle(int style) {

this.style = style;
}

/**
 * @return Returns the title.
 */
public String getTitle() {

return title;
}

/**
 * @param title The title to set.
 */
public void setTitle(String title) {

this.title = title;
}

}

152 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

CommandRegistry
The CommandRegistry maintains all the registered CommandDescriptors and allows you to
create and dispose the Command objects at your convenience, as shown in Example 8-2.

Example 8-2 Creating commands from CommandDescriptors

...
CommandDescriptor descriptor = (CommandDescriptor) iter.next();
Command newCommand = new Command(descriptor.getControl(), descriptor.getStyle(),

descriptor.getPriority());
newCommand.setText(descriptor.getTitle());
newCommand.setLongLabel(descriptor.getLongTitle());
newCommand.addSelectionListener(descriptor.getSelectionListener());
commands.add(newCommand);

...

Each view in the ITSO Mobile Store application has its own command registry. Follow these
steps to create the CommandRegistry class:

1. Select File →New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.command as the package
name and CommandRegistry as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-3. Save the changes.

Example 8-3 CommandRegistry.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.command;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import org.eclipse.ercp.swt.mobile.Command;
import org.eclipse.swt.events.SelectionListener;
import org.eclipse.swt.widgets.Control;

/**
 * Mantains the registered CommandDescriptors and allows to create and
 * dispose the Command objects at convenience. Each view in the ITSO Mobile
 * Store application has its own command registry.
 *
 */
public class CommandRegistry {

/**
 * The command descriptors for this registry
 */
private List commandDescriptors;

/**
 * The generated commands
 */
private List commands;

/**
 * Default constructor. Initialize the containers for the commands and
 * command registry
 *
 */
public CommandRegistry() {
Chapter 8. eRCP sample scenario 153

commandDescriptors = new ArrayList();
commands = new ArrayList();

}

/**
 * Register a command provided a CommandDescriptor
 *
 * @param descriptor Descriptor for the command
 */
public void registerCommand(CommandDescriptor descriptor) {

commandDescriptors.add(descriptor);
}

/**
 * Register a command provided the command information
 *
 * @param commandStyle Style for the command
 * @param priority Command priority
 * @param title Label for the command
 * @param longTitle Long label for the command
 * @param selectionListener Code to eexecute when the command is selected
 */
public void registerCommand(Control control, int commandStyle,

int priority, String title, String longTitle,
SelectionListener selectionListener) {

CommandDescriptor descriptor = new CommandDescriptor();
descriptor.setStyle(commandStyle);
descriptor.setPriority(priority);
descriptor.setTitle(title);
descriptor.setLongTitle(longTitle);
descriptor.setSelectionListener(selectionListener);
descriptor.setControl(control);
registerCommand(descriptor);

}

/**
 * Create the command objects from the command descriptors.
 *
 */
public void createCommands() {

for (Iterator iter = commandDescriptors.iterator(); iter.hasNext();) {
CommandDescriptor descriptor = (CommandDescriptor) iter.next();
Command newCommand = new Command(descriptor.getControl(),

descriptor.getStyle(), descriptor.getPriority());
newCommand.setText(descriptor.getTitle());
newCommand.setLongLabel(descriptor.getLongTitle());
newCommand.addSelectionListener(descriptor.getSelectionListener());
commands.add(newCommand);

}
}

/**
 * Dispose the commands for this registry
 *
 */
public void disposeCommands() {
154 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

for (Iterator iter = commands.iterator(); iter.hasNext();) {
Command command = (Command) iter.next();
command.dispose();

}

commands = new ArrayList();
}

}

8.4.2 The util package
The util package provides convenience classes that ar used by the other classes. Figure 8-21
shows the classes that compose this package.

Figure 8-21 The util package

MessageDialog
This class provides several static methods to open common used dialogs, such as
information dialogs, confirmation dialogs, and so on. They use the MessageBox class that is
described in 3.1.7, “MessageBox” on page 41, as illustrated in Example 8-4.

Example 8-4 Using MessageBox

...
public static int openDialog(Shell shell, String title, String message, int style) {

MessageBox messageBox = new MessageBox(shell, style);
messageBox.setText(title);
messageBox.setMessage(message);
return messageBox.open();

}
...

This class is similar to the one that is provided in the normal JFace library. Unfortunately, it is
not available in the current M7 eJFace library. Follow these steps to create the
MessageDialog class:

1. Select File →New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util as the package name
and MessageDialog as the class name. The package is created automatically. Click
Finish.
Chapter 8. eRCP sample scenario 155

2. Replace the newly generated class with the code in Example 8-5. Save the changes.

Example 8-5 MessageDialog.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util;

import org.eclipse.ercp.swt.mobile.QueryDialog;
import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.MessageBox;
import org.eclipse.swt.widgets.Shell;

/**
 * This class provides several static methods to open common used dialogs, like
 * OK dialogs, confirmation dialogs and so on. They use the MessageBox class.
 * This class is similar to the one provided in the complete JFace library,
 * sadly it is not available in the current M7 eJFace library.
 *
 */
public final class MessageDialog {

/**
 * Opens a dialog with an information icon and an OK button
 *
 * @param shell
 * The parent shell
 * @param title
 * The dialog title
 * @param message
 * The message to show
 * @return The index of the button clicked
 */
public static int openInfo(Shell shell, String title, String message) {

return openDialog(shell, title, message, SWT.OK | SWT.ICON_INFORMATION);
}

/**
 * Opens a dialog with an error icon and an OK button
 *
 * @param shell
 * The parent shell
 * @param title
 * The dialog title
 * @param message
 * The message to show
 * @return The index of the button clicked
 */
public static int openError(Shell shell, String title, String message) {

return openDialog(shell, title, message, SWT.OK | SWT.ICON_ERROR);

}

/**
 * Opens a dialog with an question icon and two buttons YES and NO
 *
 * @param shell
 * The parent shell
 * @param title
 * The dialog title
 * @param message
156 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

 * The message to show
 * @return The index of the button clicked
 */
public static int openQuestion(Shell shell, String title, String message) {

return openDialog(shell, title, message, SWT.YES | SWT.NO
| SWT.ICON_QUESTION);

}

/**
 * Opens a dialog provided its style parameter
 *
 * @param shell
 * The parent shell
 * @param title
 * The dialog title
 * @param message
 * The message to show
 * @param style
 * The style for the dialog
 * @return The index of the button clicked
 */
public static int openDialog(Shell shell, String title, String message,

int style) {

MessageBox messageBox = new MessageBox(shell, style);
messageBox.setText(title);
messageBox.setMessage(message);
return messageBox.open();

}

/**
 * Opens a dialog used to collect input from the user.
 *
 * @param shell
 * The parent shell
 * @param style
 * The dialog style
 * @param prompt
 * The prompt for the value entered
 * @param defaultValue
 * A default value shown when the dialog opens
 * @return The value entered as an String
 */
public static String openQuery(Shell shell, int style, String prompt,

String defaultValue) {

QueryDialog queryDialog = new QueryDialog(shell, SWT.NONE, style);
queryDialog.setPromptText(prompt, defaultValue);
return queryDialog.open();

}
}

Chapter 8. eRCP sample scenario 157

PresentationHelper
It seems that every application needs at least one helper class. This class provides several
utility methods that are used by the other classes in the presentation layer. It provides a point
to register fonts and static images that are bundled with the application as shown in the code
snippet provided in Example 8-6.

Example 8-6 Accessing to images and fonts

...
// Accessing to the JFace default ImageRegistry
Image image = JFaceResources.getImageRegistry().get(imageName);
if (image == null) {

image = new Image(display, imageSource);
JFaceResources.getImageRegistry().put(imageName, image);

}
return image;

...
// Accesing to a custom Font registry
Font font = (Font) fontRegistry.get(new Integer(style));
if (font == null) {

font = new Font(display, new FontData(DEFAULT_FONT_NAME,
DEFAULT_FONT_SIZE, style));

fontRegistry.put(new Integer(style), font);
}
return font;

...

In addition, this class provides formatting methods. The PresentationHelper class is
implemented using the Singleton pattern. Follow these steps to create the
PresentationHelper class:

1. Select File →New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util as the package name
and PresentationHelper as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-7. Save the changes.

Example 8-7 PresentationHelper.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util;

import java.io.InputStream;
import java.text.DecimalFormat;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.StringTokenizer;

import org.eclipse.jface.resource.JFaceResources;
import org.eclipse.swt.graphics.Font;
import org.eclipse.swt.graphics.FontData;
import org.eclipse.swt.graphics.Image;
import org.eclipse.swt.widgets.Display;

/**
 * This class provides several utility methods used by the other classes in the
 * presentation layer. Provides a point to register fonts and static images
 * bundled with the application, formatting methods and so on. It has been
 * implemented using the Singleton pattern.
158 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

 *
 */
public final class PresentationHelper {

private final static String PLUGIN_ROOT
= "/com/ibm/itsoral/ercpcasestudy/mobilestore";

public final static String LOGO_IMAGE = PLUGIN_ROOT
+ "/presentation/resources/logo.png";

public final static String NOBODY_IMAGE = PLUGIN_ROOT
+ "/presentation/resources/nobody.png";

private static final String DEFAULT_FONT_NAME = "MS Shell Dlg";

private static final int DEFAULT_FONT_SIZE = 10;

private DecimalFormat moneyFormat;

/**
 * The container for the fonts used in the application
 */
private Map fontRegistry = new HashMap();

private static PresentationHelper instance;

/**
 * Default constructor.
 *
 */
protected PresentationHelper() {

moneyFormat = new DecimalFormat("$ ###,###,##0.00");
}

/**
 * @return The unique instance for this class
 */
public static PresentationHelper getInstance() {

if (instance == null) {
instance = new PresentationHelper();

}

return instance;
}

/**
 * Format a double using the $ ###,###,##0.00 pattern
 *
 * @param amount
 * The amount to format
 * @return the formatted amount
 */
public String formatMoney(double amount) {

return moneyFormat.format(amount);

}

Chapter 8. eRCP sample scenario 159

/**
 * Wrap a string to the number of characters specified in the maxLength
 * parameter.
 *
 * @param text
 * The text to wrap
 * @param maxLength
 * The maximum length for the line
 * @return The wrapped text
 */
public String wrapText(String text, int maxLength) {

StringTokenizer tokenizer = new StringTokenizer(text, " ");
int lineLength = 0;
StringBuffer buffer = new StringBuffer(text.length());
while (tokenizer.hasMoreTokens()) {

String token = tokenizer.nextToken();
if (lineLength + token.length() < maxLength) {

lineLength += token.length();
} else {

buffer.append("\n");
lineLength = token.length();

}
buffer.append(token + " ");

}

return buffer.toString();
}

/**
 * Get an static image from the JFace default registry. The image names are
 * provided as constant in this class.
 *
 * @param display
 * The SWT display
 * @param imageName
 * An image defined as a constant in this class
 * @return The image object
 */
public Image getImage(Display display, String imageName) {

return getImage(display, imageName, getClass().getResourceAsStream(
imageName));

}

/**
 * Get an image from the JFace default registry. If the image has not been
 * registered before is registered and returned. If the image was previously
 * registered, it's returned.
 *
 * @param display
 * The SWT display
 * @param imageName
 * The image name under which the image will be registered and
 * /or retrieved
 * @param imageSource
 * The image source
 * @return The image object
 */
public Image getImage(Display display, String imageName,
160 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

InputStream imageSource) {

Image image = JFaceResources.getImageRegistry().get(imageName);
if (image == null) {

image = new Image(display, imageSource);
JFaceResources.getImageRegistry().put(imageName, image);

}

return image;
}

/**
 * Get a font from the application custom registry. If the font has not been
 * registered before, it's registered under the provided name. If it was
 * registered before it is returned.
 *
 * @param display
 * The SWT display
 * @param style
 * The font style
 * @return The font object
 */
public Font getFont(Display display, int style) {

Font font = (Font) fontRegistry.get(new Integer(style));
if (font == null) {

font = new Font(display, new FontData(DEFAULT_FONT_NAME,
DEFAULT_FONT_SIZE, style));

fontRegistry.put(new Integer(style), font);
}

return font;
}

/**
 * Dispose the fonts registered in the custom application registry
 *
 */
public void disposeFonts() {

for (Iterator iter = fontRegistry.entrySet().iterator(); iter.hasNext();) {
Font font = (Font) iter.next();
font.dispose();

}
}

}

SelectionListenerAdapter
This class is an adapter for the org.eclipse.swt.events.SelectionListener interface, and it
is provided for convenience. The SelectionListener interface is part of the SWT API for
event handling that is explained in Chapter 5, “eSWT expanded” on page 89. In general the
SWT/JFace design philosophy is to try to keep the API simple and compact, so that any
convenience methods and classes must be provided by the application developer.
Chapter 8. eRCP sample scenario 161

Follow these steps to create the SelectionListenerAdapter class:

1. Select File →New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util as the package name
and SelectionListenerAdapter as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-8. Save the changes.

Example 8-8 SelectionListernerAdapter.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util;

import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.events.SelectionListener;

/**
 * Adapter for the org.eclipse.swt.events.SelectionListener interface
 *
 */
public class SelectionListenerAdapter implements SelectionListener {

/*
 * (non-Javadoc)
 * @see org.eclipse.swt.events.SelectionListener#widgetSelected(
 * org.eclipse.swt.events.SelectionEvent)
 */
public void widgetSelected(SelectionEvent arg0) {

}

/*
 * (non-Javadoc)
 * @see org.eclipse.swt.events.SelectionListener#widgetDefaultSelected(
 * org.eclipse.swt.events.SelectionEvent)
 */
public void widgetDefaultSelected(SelectionEvent arg0) {

}
}

TableLabelProviderAdapter
This class is an adapter for the org.eclipse.jface.viewers.ITableLabelProvider interface.
The ITableLabelProvider interface is part of the JFace Viewers API. It allows you to work
with several SWT widgets using an MVC design pattern approach. More information about
the JFace Viewers API can be found in Chapter 6, “eJFace applications” on page 115. Follow
these steps to create the TableLabelProviderAdapter class:

1. Select File →New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util as the package name
and TableLabelProviderAdapter as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-9. Save the changes.

Example 8-9 TableLabelProviderAdapter.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util;

import org.eclipse.jface.viewers.ILabelProviderListener;
import org.eclipse.jface.viewers.ITableLabelProvider;
162 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

import org.eclipse.swt.graphics.Image;

/**
 * Adapter for the org.eclipse.jface.viewers.ITableLabelProvider interface
 *
 */
public class TableLabelProviderAdapter implements ITableLabelProvider {

/*
 * (non-Javadoc)
 * @see org.eclipse.jface.viewers.ITableLabelProvider#getColumnImage(
 * java.lang.Object, int)
 */
public Image getColumnImage(Object arg0, int arg1) {

return null;
}

/*
 * (non-Javadoc)
 * @see org.eclipse.jface.viewers.ITableLabelProvider#getColumnText(
 * java.lang.Object, int)
 */
public String getColumnText(Object arg0, int arg1) {

return null;
}

/*
 * (non-Javadoc)
 * @see org.eclipse.jface.viewers.IBaseLabelProvider#addListener
 * (org.eclipse.jface.viewers.ILabelProviderListener)
 */
public void addListener(ILabelProviderListener arg0) {

}

/*
 * (non-Javadoc)
 * @see org.eclipse.jface.viewers.IBaseLabelProvider#dispose()
 */
public void dispose() {

}

/*
 * (non-Javadoc)
 * @see org.eclipse.jface.viewers.IBaseLabelProvider#isLabelProperty(
 * java.lang.Object, java.lang.String)
 */
public boolean isLabelProperty(Object arg0, String arg1) {

return false;
}

/*
 * (non-Javadoc)
 * @see org.eclipse.jface.viewers.IBaseLabelProvider#removeListener(
 * org.eclipse.jface.viewers.ILabelProviderListener)
 */
Chapter 8. eRCP sample scenario 163

public void removeListener(ILabelProviderListener arg0) {

}
}

StructuredContentProviderAdapter
This class is an adapter for the org.eclipse.jface.viewers.IStructuredContentProvider
interface. The IStructuredContentProvider interface is also part of the JFace Viewers API.
Follow these steps to create the StructuredContentProviderAdapter class:

1. Select File →New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util as the package name
and StructuredContentProviderAdapter as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-10. Save the changes.

Example 8-10 StructuredContentProviderAdapter.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util;

import org.eclipse.jface.viewers.IStructuredContentProvider;
import org.eclipse.jface.viewers.Viewer;

/**
 * Adapter for the org.eclipse.jface.viewers.IStructuredContentProvider interface
 *
 */
public class StructuredContentProviderAdapter implements IStructuredContentProvider {

/*
 * (non-Javadoc)
 * @see org.eclipse.jface.viewers.IStructuredContentProvider#getElements(
 * java.lang.Object)
 */
public Object[] getElements(Object arg0) {

return null;
}

/*
 * (non-Javadoc)
 * @see org.eclipse.jface.viewers.IContentProvider#dispose()
 */
public void dispose() {

}

/*
 * (non-Javadoc)
 * @see org.eclipse.jface.viewers.IContentProvider#inputChanged(
 * org.eclipse.jface.viewers.Viewer, java.lang.Object, java.lang.Object)
 */
public void inputChanged(Viewer arg0, Object arg1, Object arg2) {

}
}

164 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

8.4.3 The resources package
The resource package contains the static images used in the application. They are accessible
by using the PresentationHelper class described in “PresentationHelper” on page 158. You
can import the images from the \ercpcasestudy\static_images.zip file from additional
materials. For more information, see Appendix A, “Additional material” on page 225.

Follow these steps to import the images into the project:

1. Right-click the project name and select Import. Select Archive File and click Next.

2. Click Browse in the From archive file field and select the static_images.zip file.

3. Enter a backslash (/) in the Into folder field as shown in Figure 8-22. Click Finish.

Figure 8-22 Importing the graphical resources

8.4.4 The preferences package
This package contains preferences support for the application. eRCP provides support for
storing preferences and showing them to the user on pages in the eWorkbench Preferences
dialog. Preferences are key/value pairs, where the key describes the name of the preference,
and the value is one of several different types. To contribute preferences to the eWorkbench
you have to add an extension to the plug-in descriptor.

The org.eclipse.ui.preferencePages extension
This extension allows you to contribute a preferences page to the eWorkbench preferences
dialog. By design, all the contributed extensions to the platform are put in the plug-in XML
descriptor, the plugin.xml file. This file is created automatically when you add an extension
using the Manifest Editor. Example 8-11 depicts the structure for this extension.

Example 8-11 org.eclipse.ui.preferencePages extension

<extension point="org.eclipse.ui.preferencePages">
 <page class="<class_name>" id="<id>" name="<page_name>"/>
</extension>
Chapter 8. eRCP sample scenario 165

The class pointed in the class attribute must be a subclass of org.eclipse.jface.
preference.PreferencePage. This class define the preferences page user interface and how
the preferences must be stored. The id attribute identified uniquely the preference page. The
name attribute indicates under which name the preferences page should appear in the
eWorkbench Preferences dialog. To create this extension for ITSO Mobile Store, follow these
steps:

1. Open the Manifest Editor by double-clicking the MANIFEST.MF file and selecting the
Extensions tab. Click Add.

2. Select org.eclipse.ui.preferencesPage and click Finish. Note that the editor creates the
plugin.xml file automatically, as shown in Figure 8-23.

3. In the Manifest Editor, select the plugin.xml tab. The extension is added to the plugin.xml
file, as shown in Figure 8-23.

Figure 8-23 Adding the preferencesPage extension.

4. Replace the empty extension point with the content shown in Example 8-12. The class for
this preferences page is MainPreferencesPage, that you will create shortly. The ID has to
be unique, generally the fully qualified name of the class is used for this purpose. Finally,
the name attribute is the page label in the eWorkbench Preferences dialog.

Example 8-12 Preferences page extension for ITSO Mobile Store

<extension point="org.eclipse.ui.preferencePages">
 <page
class="com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.preferences.MainPreferencesPa
ge"
id="com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.preferences.MainPreferencesPage"
name="Mobile Store Configuration"/>
</extension>

5. Save the changes and close the editor.

MainPreferencesPage
This class defines the user interface for the preferences page. For ITSO Mobile Store, there
are two preferences to be kept: the local database location and if the application should work
in stand-alone mode.

The MainPreferencesPage inherits from org.eclipse.jface.preference.PreferencePage.
This PreferencesPage define an abstract method, createContents(), that the preferences
page class must implement. This method creates the page contents using the usual SWT
widgets, as shown in Example 8-13, and is invoked when the preferences page is opened.
166 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Example 8-13 Preferences page createContents() method

...
Composite composite = new Composite(parent, SWT.NONE);
composite.setLayout(new GridLayout(2, true));

new Label(composite, SWT.LEFT).setText("Standalone Mode: ");
standaloneButton = new Button(composite, SWT.CHECK);
standaloneButton.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
standaloneButton.setSelection(preferencesStore

.getBoolean(MainPreferencesPage.P_STANDALONE_MODE));

new Label(composite, SWT.LEFT).setText("Database Location: ");
databaseLocationText = new Text(composite, SWT.LEFT | SWT.BORDER);
databaseLocationText.setLayoutData(new GridData(

GridData.FILL_HORIZONTAL));
databaseLocationText.setText(preferencesStore

.getString(MainPreferencesPage.P_DATABASE_LOCATION));
....

Another interesting method is the performOK() method, which is invoked when the user clicks
OK in the preferences dialog. This method should store the modified preferences and notify
the changes to any class that is interested in the preferences settings, as shown in
Example 8-14.

Example 8-14 Preferences page performOK() method

...
preferencesStore.setValue(MainPreferencesPage.P_STANDALONE_MODE,

standaloneButton.getSelection());
preferencesStore.setValue(MainPreferencesPage.P_DATABASE_LOCATION,

databaseLocationText.getText());

// Notify the DatabaseManager that the database location has changed
ConfigService service = (ConfigService) ServiceFactory.getInstance()

.getService(ServiceFactory.CONFIG_SERVICE);

service.setDatabaseLocation(databaseLocationText.getText());
...

The class uses the plug-in's default preferences store to store the preferences that are
accessible via the plug-in activator class, MobileStorePlugin, as shown in Example 8-15.

Example 8-15 Obtaining the plug-in default preferences store

...
public MainPreferencesPage() {

preferencesStore = MobileStorePlugin.getDefault().getPreferenceStore();
}
...

Finally, it is possible to set some default values for the preferences. They are set in the
preferences store that the preferences page will use. The default values should be set when
the application starts, so a good place to put this code is in the start() bundle activator

Note: The readers familiar with SWT/JFace might be wondering why we are using SWT
widgets directly instead the more usual field editors. To put it simply, the field editor API is
not available in the M7 eJFace package.
Chapter 8. eRCP sample scenario 167

method of MobileStorePlugin. You will review this in 8.6, “The Mobile Store plug-in” on
page 212.

Follow these steps to create the MainPreferencesPage class:

1. Select File →New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.preferences as the
package name and MainPreferencesPage as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-16. Save the changes.

Example 8-16 MainPreferencesPage.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.preferences;

import org.eclipse.jface.preference.IPreferenceStore;
import org.eclipse.jface.preference.PreferencePage;
import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Button;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.Text;

import com.ibm.itsoral.ercpcasestudy.mobilestore.MobileStorePlugin;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.ConfigService;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.ServiceFactory;

/**
 * Preferences page class for ITSO Mobile Store. It holds two properties: the
 * local database location and if the application should work in standalone
 * mode. The class uses the plugin's default preferences store to store the
 * preferences, that it's accesible via the plugin activator class,
 * MobileStorePlugin.
 *
 */
public class MainPreferencesPage extends PreferencePage {

public static final String P_STANDALONE_MODE = "P_STANDALONE_MODE";

public static final String P_DATABASE_LOCATION = "P_DATABASE_LOCATION";

private IPreferenceStore preferencesStore;

private Button standaloneButton;

private Text databaseLocationText;

/**
 * Default constructor. Sets the plugin's default preferences store as the
 * applicartion preferences store.
 *
 */
public MainPreferencesPage() {

preferencesStore = MobileStorePlugin.getDefault().getPreferenceStore();
}

/*
168 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

 * (non-Javadoc)
 *
 * @see org.eclipse.jface.preference.PreferencePage#createContents(
 * org.eclipse.swt.widgets.Composite)
 */
protected Control createContents(Composite parent) {

Composite composite = new Composite(parent, SWT.NONE);
composite.setLayout(new GridLayout(2, true));

new Label(composite, SWT.LEFT).setText("Standalone Mode: ");
standaloneButton = new Button(composite, SWT.CHECK);
standaloneButton.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
standaloneButton.setSelection(preferencesStore

.getBoolean(MainPreferencesPage.P_STANDALONE_MODE));

new Label(composite, SWT.LEFT).setText("Database Location: ");
databaseLocationText = new Text(composite, SWT.LEFT | SWT.BORDER);
databaseLocationText.setLayoutData(new GridData(

GridData.FILL_HORIZONTAL));
databaseLocationText.setText(preferencesStore

.getString(MainPreferencesPage.P_DATABASE_LOCATION));

return composite;
}

/*
 * (non-Javadoc)
 *
 * @see org.eclipse.jface.preference.IPreferencePage#performOk()
 */
public boolean performOk() {

preferencesStore.setValue(MainPreferencesPage.P_STANDALONE_MODE,
standaloneButton.getSelection());

preferencesStore.setValue(MainPreferencesPage.P_DATABASE_LOCATION,
databaseLocationText.getText());

// Notify the DatabaseManager that the database location has changed
ConfigService service = (ConfigService) ServiceFactory.getInstance()

.getService(ServiceFactory.CONFIG_SERVICE);

service.setDatabaseLocation(databaseLocationText.getText());

return true;
}

}

8.4.5 The views package
You have reached one of the main sections of this chapter, where the user interface for the
application is built. The views package contains the eWorkbench ViewPart classes that are
the main windows for the application. However, before we discuss the inner-workings of
these classes, we will review how they have been organized.
Chapter 8. eRCP sample scenario 169

Figure 8-24 shows that all the views are children of the BaseView class. This section reviews
each class in detail.

Figure 8-24 The views package

BaseView
This abstract class is the father for all the application views. It inherits from
org.eclipse.ui.part.ViewPart, allowing that its children can plug into the workbench. The
BaseView class provides common functionality that is used in the descendent views as
follows:

� Provides a command registry instance per view and a method to access it, called
getCommandRegistry(). You can find more details about commands and the application
CommandRegistry class in 8.4.1, “The command package” on page 150.

� Provides a method to switch between views given its view ID, called gotoView(). This
method also keeps track of the invoker view, so it is easy to return to the previous view.

� Provides a Back command that returns to the previous view. By default, the views add the
Back command to their own commands unless you specify the contrary by setting the
supportBack property to false.

� Provides a composite instance to place the view widgets and a method to access it, the
getMainComposite() method. By default the setFocus() method set the focus to the
mainComposite. This means that any command that you add using mainComposite as the
associated control is available when the view is shown unless you explicitly override the
setFocus method in a BaseView subclass.

� Provides access to the parent composite for the view that can be used in other methods of
the view classes.

Follow these steps to create the BaseView class:

1. Select File →New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views as the package
name and BaseView as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-17. Save the changes.
170 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Example 8-17 BaseView.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views;

import org.eclipse.ercp.swt.mobile.Command;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.ui.PartInitException;
import org.eclipse.ui.part.ViewPart;

import com.ibm.itsoral.ercpcasestudy.mobilestore.ExceptionManager;
import com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.command.CommandRegistry;
import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.SelectionListenerAdapter;

/**
 * This abstract class is the antecesor for all the application views. It
 * inherits from org.eclipse.ui.part.ViewPart allowing that its children can
 * plug into the workbench.
 *
 */
public abstract class BaseView extends ViewPart {

private String previousViewId;

private Composite parent;

private CommandRegistry commandRegistry;

private boolean backSupport;

private Composite mainComposite;

/**
 * Default constructor. By default the views will have a Back command.
 *
 */
public BaseView() {

backSupport = true;
}

/*
 * (non-Javadoc)
 *
 * @see

org.eclipse.ui.IWorkbenchPart#createPartControl(org.eclipse.swt.widgets.Composite)
 */
public void createPartControl(Composite parent) {

this.parent = parent;

mainComposite = new Composite(parent, SWT.NONE);

commandRegistry = new CommandRegistry();

if (backSupport) {

commandRegistry.registerCommand(mainComposite, Command.SELECT, 1,
"Back", "Back", new SelectionListenerAdapter() {
Chapter 8. eRCP sample scenario 171

public void widgetSelected(SelectionEvent arg0) {

doBackCommand();
}

});
}

}

/**
 * Goes back to the previous view.
 *
 */
protected void doBackCommand() {

gotoView(this.previousViewId, false);

}

/**
 * Goes to a view given its id. The target view will remember its previous
 * visited view.
 *
 * @param viewId
 * The view id
 * @return The target view
 */
protected ViewPart gotoView(String viewId) {

return gotoView(viewId, true);
}

/**
 * Goes to a view given its id. It takes another parameter to indicate if
 * the new view should remember the previous visited view.
 *
 * @param viewId The view id
 * @param rememberPreviousView Remember the previous view?
 * @return The target view
 */
private ViewPart gotoView(String viewId, boolean rememberPreviousView) {

BaseView view = null;

try {

view = (BaseView) getSite().getWorkbenchWindow().getActivePage()
.showView(viewId);

if (rememberPreviousView) {
view.previousViewId = getConfigurationElement().getAttribute(

"id");
System.out.println("Setting " + view.previousViewId

+ " as the previous view of " + viewId);
}

} catch (PartInitException e) {

ExceptionManager.getInstance().handleException(this, e,
getParent().getShell(), "The view cannot be shown");
172 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

}

return view;
}

/**
 * Sets the focus to the main composite
 */
public void setFocus() {

getMainComposite().setFocus();
}

/**
 * Returns the parent composite for this view. Useful when you need to
 * access the parent from anonymous inner classes, i.e. event handlers for
 * widgets and so on
 *
 * @return The parent composite
 */
protected Composite getParent() {

return parent;
}

/**
 * @return The command registry for this view
 */
protected CommandRegistry getCommandRegistry() {

return commandRegistry;
}

/**
 * @return The main composite for this view
 */
protected Composite getMainComposite() {

return mainComposite;
}

/**
 * Sets if the view will have a Back command
 *
 * @param backSupport
 * The backSupport to set.
 */
protected void setBackSupport(boolean backSupport) {

this.backSupport = backSupport;
}

}

ModuleSelectorView
This view is the first window that you see when the application is started. It allows you to
select a particular module to work with. Each module has its own starting view. For the ITSO
Mobile Store sample scenario, there are two modules:

� The Mobile Store module that allows you to manage customers and orders.

� The Synchronize module, that allows you to sync the local database with a remote one.
For the scenario the synchronization is simulated by actually recreating the entire local
database.
Chapter 8. eRCP sample scenario 173

Figure 8-25 shows a sketch with the desired appearance for the view.

Figure 8-25 ModuleSelectorView sketch

There are two main objects in this view. In the upper side, we want to put the company logo.
Below the logo, we want to show some kind of selector for the modules available. If you have
reviewed the eSWT widgets available in Chapter 2, “eSWT fundamentals” on page 9, you
understand that the logo should be implemented as a Label and the module selector could be
implemented as a List. The layout could be a GridLayout with just one column. All the
widgets will be placed in the main composite that the view inherits from BaseView.

In Example 8-18, the view extends from the BaseView class. The view ID is a constant that
must be unique, so the fully qualified class name is generally used. Also, this ID is used to
declare the view in the plugin.xml descriptor. We have decided to use a list, but instead of
using the SWT List directly, we use the JFace List Viewer. (See Example 8-21 on page 175 to
see how to set up the model for this viewer.) Information about the start views for each
modules are kept in the modulesMap property. As decided previously, the logo is implemented
as a SWT Label. Because this view is the first one for the application, it must set the
backSupport property to false.

Example 8-18 ModuleSelectorView - Snippet 1

....
public class ModuleSelectorView extends BaseView {

public static final String VIEW_ID =
"com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.ModuleSelectorView";

private ListViewer modulesViewer;
private Map modulesMap;
private Label logoLabel;

......
public ModuleSelectorView() {

// The only view that doesn't require/support back
setBackSupport(false);
initModulesMap();

}
....
174 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

The initModulesMap() method shown in Example 8-19 initializes the map with the starting
views for each module. This map is the model object for the ListViewer.

Example 8-19 ModuleSelectorView - Snippet 2

...
private void initModulesMap() {

modulesMap = new HashMap();
modulesMap.put("Mobile Store", CustomerListView.VIEW_ID);
modulesMap.put("Synchronization", SynchronizeView.VIEW_ID);

}
...

The widgets that compose the view user interface are created in the createPartControl()
method. First, you have to call the parent implementation. Then, you have to set the layout for
the main composite. Finally, you have to create the controls, as shown in Example 8-20. Note
how we use the PresentationHelper class to set the image and how we use layout data to
fine-tune the control position.

Example 8-20 ModuleSelectorView - Snippet 3

...
public void createPartControl(Composite parent) {

super.createPartControl(parent);
getMainComposite().setLayout(new GridLayout());

logoLabel = new Label(getMainComposite(), SWT.NONE);
logoLabel.setImage(PresentationHelper.getInstance().getImage(

getParent().getDisplay(), PresentationHelper.LOGO_IMAGE));
logoLabel.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
((GridData) logoLabel.getLayoutData()).horizontalAlignment = GridData.CENTER;

...

After we create the label control, we create the ListViewer, as shown in Example 8-21. Note
that the input for the viewer is the modules map. Then, the input object, the map in this case,
is passed to the content provider’s getElements() method, that in turn returns an Object
array, representing the list elements. Finally, when the list is displayed, each element in the
Object array is passed to the label provider’s getText() method, that return the text to be
displayed for that element in the SWT List widget that is associated to the viewer.

Each time an element in the List is selected, the gotoCommand() is called. Note that we have
used the adapter classes that you saw in 8.4.2, “The util package” on page 155 to make the
code clear by avoiding spurious do-nothing methods.

Example 8-21 ModuleSelectorView - Snippet 4

...
modulesViewer = new ListViewer(getMainComposite(), SWT.SINGLE

| SWT.BORDER);
modulesViewer.getList().setLayoutData(new GridData(GridData.FILL_BOTH));

modulesViewer
.setContentProvider(new StructuredContentProviderAdapter() {

public Object[] getElements(Object input) {

return ((Map) input).keySet().toArray();
Chapter 8. eRCP sample scenario 175

}
});

modulesViewer.setLabelProvider(new LabelProvider() {

public String getText(Object rowElement) {

return (String) rowElement;
}

});

modulesViewer.setInput(modulesMap);

modulesViewer.getList().addSelectionListener(
new SelectionListenerAdapter() {

public void widgetSelected(SelectionEvent arg0) {

doGotoCommand();
}

});
...

Additionally, we registered a command, associated to the List widget, to perform the go to
functionality, as shown in Example 8-22. It is a bit redundant because the selection triggers
the gotoCommand() also, but we decided to put it here to show how to add commands to a
view.

Example 8-22 ModuleSelectorView - Snippet 5

...
getCommandRegistry().registerCommand(modulesViewer.getList(),

Command.SELECT, 1, "Go to", "Go to",
new SelectionListenerAdapter() {

public void widgetSelected(SelectionEvent event) {

doGotoCommand();
}

});

getCommandRegistry().createCommands();

parent.layout();
...

Note: You must always call the CommandRegistry createCommands() method at the end of
createPartControl() to create the command objects. Also, you must call the layout
method to draw all the objects in the screen.
176 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

The gotoCommand() method takes the current selection from the ListViewer, obtains the view
ID, and then use the inherited gotoView() method to switch to the selected view, as shown in
Example 8-23. The setFocus() method sets the focus to the module selector list.

Example 8-23 ModuleSelectorView - Snippet 6

...
protected void doGotoCommand() {

String viewId = (String) modulesMap
.get(((StructuredSelection) modulesViewer.getSelection())

.getFirstElement());

if (viewId == null) {

MessageDialog.openInfo(getParent().getShell(), "Info",
"This option is not available yet");

return;
}

gotoView(viewId);
}

public void setFocus() {
modulesViewer.getList().setFocus();

}
...

Follow these steps to create the ModuleSelectorView class and to register it with
eWorkbench:

1. Select File → New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views as the package
name and ModuleSelectorView as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-24. Save the changes.

Example 8-24 ModuleSelectorView.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views;

import java.util.HashMap;
import java.util.Map;

import org.eclipse.ercp.swt.mobile.Command;
import org.eclipse.jface.viewers.LabelProvider;
import org.eclipse.jface.viewers.ListViewer;
import org.eclipse.jface.viewers.StructuredSelection;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;

import com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.MessageDialog;
import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.SelectionListenerAdapter;
import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.StructuredContentProviderAdapte
r;
Chapter 8. eRCP sample scenario 177

import com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.PresentationHelper;

/**
 * Allows you to select a particular module to work with. Each module will have
 * its own starting view.
 *
 */
public class ModuleSelectorView extends BaseView {

public static final String VIEW_ID =
"com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.ModuleSelectorView";

private ListViewer modulesViewer;

private Map modulesMap;

private Label logoLabel;

/**
 * Default constructor. Sets the backSupport to false and initialize the
 * modules map.
 *
 */
public ModuleSelectorView() {

// The only view that doesn't require/support back
setBackSupport(false);
initModulesMap();

}

/**
 * Initialize the modules map with the starting views for each module.
 *
 */
private void initModulesMap() {

modulesMap = new HashMap();
modulesMap.put("Mobile Store", CustomerListView.VIEW_ID);
modulesMap.put("Synchronization", SynchronizeView.VIEW_ID);

}

/*
 * (non-Javadoc)
 *
 * @see org.eclipse.ui.IWorkbenchPart#createPartControl(

org.eclipse.swt.widgets.Composite)
 */
public void createPartControl(Composite parent) {

super.createPartControl(parent);
getMainComposite().setLayout(new GridLayout());

logoLabel = new Label(getMainComposite(), SWT.NONE);
logoLabel.setImage(PresentationHelper.getInstance().getImage(

getParent().getDisplay(), PresentationHelper.LOGO_IMAGE));
logoLabel.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
((GridData) logoLabel.getLayoutData()).horizontalAlignment = GridData.CENTER;

modulesViewer = new ListViewer(getMainComposite(), SWT.SINGLE
| SWT.BORDER);
178 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

modulesViewer.getList().setLayoutData(new GridData(GridData.FILL_BOTH));

modulesViewer
.setContentProvider(new StructuredContentProviderAdapter() {

public Object[] getElements(Object input) {

return ((Map) input).keySet().toArray();
}

});

modulesViewer.setLabelProvider(new LabelProvider() {

public String getText(Object rowElement) {

return (String) rowElement;
}

});

modulesViewer.setInput(modulesMap);

modulesViewer.getList().addSelectionListener(
new SelectionListenerAdapter() {

public void widgetSelected(SelectionEvent arg0) {

doGotoCommand();
}

});

getCommandRegistry().registerCommand(modulesViewer.getList(),
Command.SELECT, 1, "Go to", "Go to",
new SelectionListenerAdapter() {

public void widgetSelected(SelectionEvent event) {

doGotoCommand();
}

});

getCommandRegistry().createCommands();

parent.layout();
}

/**
 * Switchs to the selected module
 *
 */
protected void doGotoCommand() {

String viewId = (String) modulesMap
.get(((StructuredSelection) modulesViewer.getSelection())

.getFirstElement());

if (viewId == null) {

MessageDialog.openInfo(getParent().getShell(), "Info",
"This option is not available yet");
Chapter 8. eRCP sample scenario 179

return;
}

gotoView(viewId);
}

/**
 * Sets the focus to the List widget
 */
public void setFocus() {

modulesViewer.getList().setFocus();
}

}

3. To register the view with eWorkbench, add the extension that is shown in Example 8-25 to
the plugin.xml file.

Example 8-25 ModuleSelectorView view extension

<extension point="org.eclipse.ui.views">
<view

allowMultiple="false"
category="org.eclipse.ercp.eworkbench.viewCategory"

class="com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.ModuleSelectorView"
icon="icons/sample.gif"
id="com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.ModuleSelectorView"
name="Module Selector"/>

</extension>

SynchronizeView
The synchronize view allows you to create and to populate the local database. It takes the
data from a remote database using the DB2 Everyplace sync capabilities. For this ITSO
Mobile Store version, the database is created and populated using local resources.
Figure 8-26 presents a sketch for this view.

Figure 8-26 SynchronizeView sketch

Note: You will notice some compilation errors in the code provided in Example 8-24. These
errors are because the code is referencing classes that you will add later. Ignore the
compilation errors until all the application code is in place.
180 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

For the message, divisor line, and status, you can use a SWT Label widget. For the progress
bar, we used the SWT ProgressBar widget, explained in 3.1.11, “ProgressBar” on page 47.
We used a GridLayout to order the widgets in the screen.

The class inherits from BaseView and implements the createPartControl() method to create
each widget in the main composite. It calls to the createCommands() and layout() methods at
the end of the createPartControl() method.

Example 8-26 shows how the progress bar widgets is created. We used the
SWT.INDETERMINATE style to indicate that the progress bar should be always show progress.

Example 8-26 SynchronizeView - Snippet 1

...
progressBar = new ProgressBar(getMainComposite(), SWT.INDETERMINATE

| SWT.HORIZONTAL);
progressBar.setVisible(false);

...

When the user selects the Sync command, the doSyncCommand() method is called. This
method starts a worker thread to perform the sync to avoid freezing the user interface thread,
as shown in Example 8-27.

Example 8-27 SynchronizeView - Snippet 2

protected void doSyncCommand() {
...

new Thread() {

public void run() {

getParent().getDisplay().asyncExec(new Runnable() {

public void run() {

statusLabel.setVisible(true);
progressBar.setVisible(true);

}
});

...
boolean syncStatus = false;
try {

syncService.sync(syncProperties);
syncStatus = true;

} catch (RuntimeException re) {

ExceptionManager.getInstance().handleException(this, re);
}

final boolean success = syncStatus;
getParent().getDisplay().asyncExec(new Runnable() {

public void run() {
statusLabel.setVisible(false);
progressBar.setVisible(false);

...

Note: You must use the Display.asyncExec() method inside the worker thread when
access the user interface widgets to avoid concurrent access problems.
Chapter 8. eRCP sample scenario 181

}
});

}

}.start();
...

Follow these steps to create the SynchronizeView class and to register the view with
eWorkbench:

1. Select File → New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views as the package
name and SynchronizeView as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-28. Save the changes.

Example 8-28 SynchronizeView.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views;

import java.util.Properties;

import org.eclipse.ercp.swt.mobile.Command;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.ProgressBar;

import com.ibm.itsoral.ercpcasestudy.mobilestore.ExceptionManager;
import com.ibm.itsoral.ercpcasestudy.mobilestore.MobileStorePlugin;
import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.preferences.MainPreferencesPage;
import com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.MessageDialog;
import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.SelectionListenerAdapter;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.ConfigService;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.ServiceFactory;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.SyncService;

/**
 * Creates and populates the local database.
 *
 */
public class SynchronizeView extends BaseView {

public static final String VIEW_ID =
"com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.SynchronizeView";

private Label titleLabel;

private Label statusLabel;

private ProgressBar progressBar;

/*
 * (non-Javadoc)
 *
182 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

 * @see
org.eclipse.ui.IWorkbenchPart#createPartControl(org.eclipse.swt.widgets.Composite)

 */
public void createPartControl(Composite parent) {

super.createPartControl(parent);

getMainComposite().setLayout(new GridLayout());
GridData gridData = null;

titleLabel = new Label(getMainComposite(), SWT.WRAP | SWT.LEFT);
titleLabel

.setText("To synchronize select Command > Sync from the menu...");
gridData = new GridData();
gridData.horizontalAlignment = SWT.FILL;
gridData.widthHint = getMainComposite().getSize().x;
titleLabel.setLayoutData(gridData);

gridData = new GridData();
gridData.horizontalAlignment = SWT.FILL;
new Label(getMainComposite(), SWT.SEPARATOR | SWT.HORIZONTAL

| SWT.SHADOW_OUT).setLayoutData(gridData);

gridData = new GridData();
gridData.horizontalAlignment = SWT.FILL;
new Label(getMainComposite(), SWT.NONE).setLayoutData(gridData);

statusLabel = new Label(getMainComposite(), SWT.CENTER);
statusLabel.setText("Synchronizing...");
statusLabel.setVisible(false);

gridData = new GridData();
gridData.horizontalAlignment = SWT.CENTER;
statusLabel.setLayoutData(gridData);

progressBar = new ProgressBar(getMainComposite(), SWT.INDETERMINATE
| SWT.HORIZONTAL);

progressBar.setVisible(false);
gridData = new GridData();
gridData.horizontalAlignment = SWT.FILL;
progressBar.setLayoutData(gridData);

getCommandRegistry().registerCommand(getMainComposite(),
Command.SELECT, 1, "Sync", "Sync",
new SelectionListenerAdapter() {

public void widgetSelected(SelectionEvent event) {
doSyncCommand();

}

});

getCommandRegistry().createCommands();

}

/**
 * Executes the synchronization
 */
protected void doSyncCommand() {

boolean standaloneMode = MobileStorePlugin.getDefault()
.getPreferenceStore().getBoolean(

MainPreferencesPage.P_STANDALONE_MODE);

if (!standaloneMode) {
Chapter 8. eRCP sample scenario 183

MessageDialog.openInfo(getParent().getShell(), "Info",
"DB2eSync is not yet implemented");

return;
}

new Thread() {

public void run() {

getParent().getDisplay().asyncExec(new Runnable() {

public void run() {
statusLabel.setVisible(true);
progressBar.setVisible(true);

}
});

SyncService syncService = ((SyncService) ServiceFactory
.getInstance().getService(

ServiceFactory.SYNC_SERVICE_STANDALONE));

ConfigService configService = (ConfigService) ServiceFactory
.getInstance()
.getService(ServiceFactory.CONFIG_SERVICE);

Properties syncProperties = new Properties();
syncProperties.setProperty(SyncService.SYNC_DBLOCATION,

configService.getDatabaseLocation());

boolean syncStatus = false;
try {

syncService.sync(syncProperties);
syncStatus = true;

} catch (RuntimeException re) {

ExceptionManager.getInstance().handleException(this, re);
}

final boolean success = syncStatus;
getParent().getDisplay().asyncExec(new Runnable() {

public void run() {

statusLabel.setVisible(false);
progressBar.setVisible(false);

if (success)
MessageDialog.openInfo(getParent().getShell(),

"Info", "Sync successfully completed");
else

MessageDialog.openError(getParent().getShell(),
"Error", "Sync failed");

}
});

}

}.start();
}

}

184 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

3. To register the view with eWorkbench, add the extension shown in Example 8-29 to the
plugin.xml file. Add the view entry to the extension org.eclipse.ui.views that you added
in Example 8-26 on page 181.

Example 8-29 SynchronizeView extension

<view
allowMultiple="false"
category="org.eclipse.ercp.eworkbench.viewCategory"
class="com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.SynchronizeView"
icon="icons/sample.gif"
id="com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.SynchronizeView"
name="Synchronize"/>

CustomerListView
This view presents a list of customers for whom the user can place orders. The list includes
the customer’s photo and name for identification. If the user selects a customer, the
application allows the user to edit customer information such as the address in a separate
window. It also allows the user to start an order for the selected customer. Figure 8-27
presents a sketch for this view.

Figure 8-27 CustomerListView sketch

Given that we need to include two columns of information — the customer’s photo and name
— we decided to use an SWT Table widget. The table fills the entire application screen. The
view has two commands available: one to edit the customer information and one to take an
order for the selected customer.
Chapter 8. eRCP sample scenario 185

As the others views, the CustomerListView inherits from BaseView, has a view ID, and
implements the createPartControl() method. In Example 8-30, the Table widgets are not
used directly. Instead, the eJFace TableViewer class is used. After you create the table
viewer, you need to create the table columns and set its properties, such as title, size,
alignment, and so on.

Example 8-30 CustomerListView - Snippet 1

...
tableViewer = new TableViewer(getMainComposite(), SWT.BORDER

| SWT.FULL_SELECTION | SWT.SINGLE);

tableViewer.getTable().setLayoutData(new GridData(GridData.FILL_BOTH));

new TableColumn(tableViewer.getTable(), SWT.CENTER);
new TableColumn(tableViewer.getTable(), SWT.CENTER);

tableViewer.getTable().getColumn(0).setWidth(100);
tableViewer.getTable().getColumn(0).setAlignment(SWT.CENTER);
tableViewer.getTable().getColumn(1).setWidth(100);
tableViewer.getTable().getColumn(1).setAlignment(SWT.CENTER);

...

As its counterpart for SWT Lists, the TableViewer needs a content provider, a label provider,
and an input object. The input object for the customer viewer is the customerService service
object. Another interesting thing is that the label provider can take images. This feature is
used to show the customer photo, as shown in Example 8-31.

Example 8-31 CustomerListView - Snippet 2

tableViewer.setContentProvider(new StructuredContentProviderAdapter() {

public Object[] getElements(Object input) {

return ((CustomerService) input).findAll().toArray();
}

});

tableViewer.setLabelProvider(new TableLabelProviderAdapter() {

public Image getColumnImage(Object element, int col) {

if (element instanceof Customer) {

Customer customer = (Customer) element;

if (col == 0) {

Image photo = null;
if (customer.getPhoto() == null) {

photo = PresentationHelper.getInstance().getImage(
getParent().getDisplay(),
PresentationHelper.NOBODY_IMAGE);

} else {
photo = PresentationHelper.getInstance().getImage(

getParent().getDisplay(),
"customer" + customer.getId(),
new ByteArrayInputStream(customer

.getPhoto()));
}

return photo;
186 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

}
}

return null;
}

public String getColumnText(Object element, int col) {

.....

}
});

tableViewer.setInput(getCustomerService());

The doEditCommand() method, shown in Example 8-32, gets the selected customer from the
table viewer. The selection is a Customer object — an object from the model. Then, the
customer details dialog is called with information that is provided by the customer object.
(You can find information about the CustomerDetailsDialog in 8.4.6, “The dialogs package”
on page 200.) Finally, the updated customer objects are passed to the service layer to update
them in the database.

Example 8-32 CustomerListView - Snippet 3

...
protected void doEditCommand() {

Customer customer = (Customer) ((IStructuredSelection) tableViewer
.getSelection()).getFirstElement();

if (customer == null) {
MessageDialog.openError(getParent().getShell(), "Error",

"Please select a customer");
return;

}

CustomerDetailsDialog dialog = new CustomerDetailsDialog(getParent());
dialog.setCustomerInfo(customer);
dialog.open();
getCustomerService().update(dialog.getCustomerInfo());

}
...

The doTakeOrderCommand() method takes the selected customer from the viewer and
switches to the take order view, as shown in Example 8-33.

Example 8-33 CustomerListView - Snippet 4

...
protected void doTakeOrderCommand() {

Customer customer = (Customer) ((IStructuredSelection) tableViewer
.getSelection()).getFirstElement();

if (customer == null) {
MessageDialog.openError(getParent().getShell(), "Error",

"Please select a customer");
return;

}

TakeOrderView takeOrderView = (TakeOrderView) gotoView(TakeOrderView.VIEW_ID);
takeOrderView.setCustomer(customer);

}
...
Chapter 8. eRCP sample scenario 187

Follow these steps to create the CustomerListView class and to register the view with the
eWorkbench:

1. Select File → New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views as the package
name and CustomerListView as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-34. Save the changes.

Example 8-34 CustomerListView.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views;

import java.io.ByteArrayInputStream;

import org.eclipse.ercp.swt.mobile.Command;
import org.eclipse.jface.viewers.IStructuredSelection;
import org.eclipse.jface.viewers.TableViewer;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.graphics.Image;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.TableColumn;

import com.ibm.itsoral.ercpcasestudy.mobilestore.domain.Customer;
import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.dialogs.CustomerDetailsDialog;
import com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.MessageDialog;
import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.SelectionListenerAdapter;
import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.StructuredContentProviderAdapte
r;
import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.TableLabelProviderAdapter;
import com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.PresentationHelper;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.CustomerService;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.ServiceFactory;

/**
 * This view presents a list of customers for whom the user can place orders.
 * The list includes the customer’s photo and name to identify her. If the user
 * selects a customer, the application allows to edit customer’s information
 * like address and so on, in a separate window; also allows to start an order
 * for the selected customer.
 *
 */
public class CustomerListView extends BaseView {

public final static String VIEW_ID =
"com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.CustomerListView";

private TableViewer tableViewer;

private CustomerService customerService;

/*
 * (non-Javadoc)
188 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

 *
 * @see

org.eclipse.ui.IWorkbenchPart#createPartControl(org.eclipse.swt.widgets.Composite)
 */
public void createPartControl(Composite parent) {

super.createPartControl(parent);

getMainComposite().setLayout(new GridLayout());

new Label(getMainComposite(), SWT.LEFT)
.setText("Please select a customer:");

tableViewer = new TableViewer(getMainComposite(), SWT.BORDER
| SWT.FULL_SELECTION | SWT.SINGLE);

tableViewer.getTable().setLayoutData(new GridData(GridData.FILL_BOTH));

new TableColumn(tableViewer.getTable(), SWT.CENTER);
new TableColumn(tableViewer.getTable(), SWT.CENTER);

tableViewer.getTable().getColumn(0).setWidth(100);
tableViewer.getTable().getColumn(0).setAlignment(SWT.CENTER);
tableViewer.getTable().getColumn(1).setWidth(100);
tableViewer.getTable().getColumn(1).setAlignment(SWT.CENTER);

tableViewer.setContentProvider(new StructuredContentProviderAdapter() {

public Object[] getElements(Object input) {

return ((CustomerService) input).findAll().toArray();
}

});

tableViewer.setLabelProvider(new TableLabelProviderAdapter() {

public Image getColumnImage(Object element, int col) {

if (element instanceof Customer) {

Customer customer = (Customer) element;

if (col == 0) {

Image photo = null;
if (customer.getPhoto() == null) {

photo = PresentationHelper.getInstance().getImage(
getParent().getDisplay(),
PresentationHelper.NOBODY_IMAGE);

} else {
photo = PresentationHelper.getInstance().getImage(

getParent().getDisplay(),
"customer" + customer.getId(),
new ByteArrayInputStream(customer

.getPhoto()));
}

return photo;
}

Chapter 8. eRCP sample scenario 189

}

return null;
}

public String getColumnText(Object element, int col) {

if (element instanceof Customer) {
Customer customer = (Customer) element;
if (col == 1)

return customer.getName();

}

return null;
}

});

tableViewer.setInput(getCustomerService());

tableViewer.getTable().addSelectionListener(
new SelectionListenerAdapter() {

public void widgetDefaultSelected(SelectionEvent arg0) {

doTakeOrderCommand();
}

});

getCommandRegistry().registerCommand(tableViewer.getTable(),
Command.SELECT, 1, "View/Edit", "View/Edit",
new SelectionListenerAdapter() {

public void widgetSelected(SelectionEvent arg0) {

doEditCommand();
}

});

getCommandRegistry().registerCommand(tableViewer.getTable(),
Command.SELECT, 1, "&Take Order", "&Take Order",
new SelectionListenerAdapter() {

public void widgetSelected(SelectionEvent arg0) {

doTakeOrderCommand();
}

});

getCommandRegistry().createCommands();

parent.layout();
}

/**
 * Invokes the CustomerDetailsDialog with the selected customer for
 * viewing/editing and updates the database with the newly customer
 * information
 *
 */
190 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

protected void doEditCommand() {

Customer customer = (Customer) ((IStructuredSelection) tableViewer
.getSelection()).getFirstElement();

if (customer == null) {
MessageDialog.openError(getParent().getShell(), "Error",

"Please select a customer");
return;

}

CustomerDetailsDialog dialog = new CustomerDetailsDialog(getParent());
dialog.setCustomerInfo(customer);
dialog.open();
getCustomerService().update(dialog.getCustomerInfo());

}

/**
 * Switchs to the Take Order view with the selected customer
 *
 */
protected void doTakeOrderCommand() {

Customer customer = (Customer) ((IStructuredSelection) tableViewer
.getSelection()).getFirstElement();

if (customer == null) {
MessageDialog.openError(getParent().getShell(), "Error",

"Please select a customer");
return;

}

TakeOrderView takeOrderView = (TakeOrderView) gotoView(TakeOrderView.VIEW_ID);
takeOrderView.setCustomer(customer);

}

/**
 * @return The CustomerService service
 */
protected CustomerService getCustomerService() {

if (customerService == null)
customerService = (CustomerService) ServiceFactory.getInstance()

.getService(ServiceFactory.CUSTOMER_SERVICE);

return customerService;
}

}

Chapter 8. eRCP sample scenario 191

3. To register the view with eWorkbench, add the extension shown in Example 8-35 to the
plugin.xml file. Add the view entry to the extension org.eclipse.ui.views, that you added
in Example 8-26 on page 181.

Example 8-35 CustomerListView view extension

<view
allowMultiple="false"
category="org.eclipse.ercp.eworkbench.viewCategory"
class="com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.CustomerListView"
icon="icons/sample.gif"
id="com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.CustomerListView"
name="Customer List"/>

TakeOrderView
The take order view is similar to the common shopping carts that you can find in many Web
sites. It allows the user to add, modify, or remove products to the order, automatically
calculating the tax amount, total order amount, and so on. Figure 8-28 depicts a sketch of the
layout for the take order view.

Figure 8-28 TakeOrderView sketch

Each line item holds the product name, the quantity, price, and subtotal. Clearly, a table is
appropriate here. For the tax, shipping, subtotal, and total fields, labels are adequate. With
more fields than in previous views, the GridLayout is the appropriate choice here.
192 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Follow these steps to create the TakeOrderView class:

1. Select File → New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views as the package
name and TakeOrderView as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-36. Save the changes.

Example 8-36 TakeOrderView.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views;

import org.eclipse.ercp.swt.mobile.Command;
import org.eclipse.ercp.swt.mobile.QueryDialog;
import org.eclipse.jface.viewers.IStructuredSelection;
import org.eclipse.jface.viewers.TableViewer;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.TableColumn;

import com.ibm.itsoral.ercpcasestudy.mobilestore.domain.Customer;
import com.ibm.itsoral.ercpcasestudy.mobilestore.domain.LineItem;
import com.ibm.itsoral.ercpcasestudy.mobilestore.domain.Order;
import com.ibm.itsoral.ercpcasestudy.mobilestore.domain.Product;
import com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.dialogs.ProductDialog;
import com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.MessageDialog;
import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.SelectionListenerAdapter;
import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.StructuredContentProviderAdapte
r;
import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.TableLabelProviderAdapter;
import com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.PresentationHelper;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.OrderService;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.ServiceFactory;

/**
 * Allows the user to add/modify/delete products from an order and allows to put
 * the order in the database
 *
 */
public class TakeOrderView extends BaseView {

public static final String VIEW_ID =
"com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.TakeOrderView";

private Order order;

private TableViewer orderViewer;

private Label tax;

private Label shipping;

private Label total;
Chapter 8. eRCP sample scenario 193

private Label subTotal;

private Label customerLabel;

/**
 * Default constructor. Initialize an empty order
 *
 */
public TakeOrderView() {

order = new Order();
}

/*
 * (non-Javadoc)
 *
 * @see

org.eclipse.ui.IWorkbenchPart#createPartControl(org.eclipse.swt.widgets.Composite)
 */
public void createPartControl(Composite parent) {

super.createPartControl(parent);

getMainComposite().setLayout(new GridLayout(2, false));

Label label = new Label(getMainComposite(), SWT.LEFT);
label.setText("Customer: ");
label.setFont(PresentationHelper.getInstance().getFont(

getParent().getDisplay(), SWT.BOLD));

customerLabel = new Label(getMainComposite(), SWT.SINGLE);
customerLabel.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

orderViewer = new TableViewer(getMainComposite(), SWT.BORDER
| SWT.SINGLE | SWT.FULL_SELECTION);

orderViewer.getTable().setLayoutData(new GridData(GridData.FILL_BOTH));
((GridData) orderViewer.getTable().getLayoutData()).horizontalSpan = 2;

TableColumn column = new TableColumn(orderViewer.getTable(), SWT.CENTER);
column.setText("Qt.");
column.setWidth(30);

column = new TableColumn(orderViewer.getTable(), SWT.CENTER);
column.setText("Name");
column.setWidth(120);

column = new TableColumn(orderViewer.getTable(), SWT.CENTER);
column.setText("Price");
column.setWidth(50);

column = new TableColumn(orderViewer.getTable(), SWT.CENTER);
column.setText("Subtotal");
column.setWidth(70);

orderViewer.getTable().setHeaderVisible(true);

orderViewer.setLabelProvider(new TableLabelProviderAdapter() {

public String getColumnText(Object element, int colIndex) {

String columnText = "";
194 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

LineItem item = (LineItem) element;
switch (colIndex) {
case 0:

columnText = String.valueOf(item.getQuantity());
break;

case 1:
columnText = String.valueOf(item.getProduct().getName());
break;

case 2:
columnText = PresentationHelper.getInstance().formatMoney(

item.getPrice());
break;

case 3:
columnText = PresentationHelper.getInstance().formatMoney(

item.getSubtotal());
break;

default:
break;

}

return columnText;
}

});

orderViewer.setContentProvider(new StructuredContentProviderAdapter() {

public Object[] getElements(Object input) {

return ((Order) input).getLineItemsArray();
}

});

orderViewer.setInput(order);

orderViewer.getTable().addSelectionListener(
new SelectionListenerAdapter() {

public void widgetDefaultSelected(SelectionEvent arg0) {
doModifyItemCommand();

}

});

label = new Label(getMainComposite(), SWT.RIGHT);
label.setText("SubTotal: ");
label.setLayoutData(new GridData(GridData.HORIZONTAL_ALIGN_END

| GridData.FILL_HORIZONTAL));

subTotal = new Label(getMainComposite(), SWT.RIGHT);
subTotal.setText("$ 0.00");
subTotal.setLayoutData(new GridData(GridData.HORIZONTAL_ALIGN_END));

label = new Label(getMainComposite(), SWT.RIGHT);
label.setText("Tax: ");
label.setLayoutData(new GridData(GridData.HORIZONTAL_ALIGN_END

| GridData.FILL_HORIZONTAL));

tax = new Label(getMainComposite(), SWT.RIGHT);
tax.setText("$ 0.00");
tax.setLayoutData(new GridData(GridData.HORIZONTAL_ALIGN_END));
Chapter 8. eRCP sample scenario 195

label = new Label(getMainComposite(), SWT.RIGHT);
label.setText("Shipping: ");
label.setLayoutData(new GridData(GridData.HORIZONTAL_ALIGN_END

| GridData.FILL_HORIZONTAL));

shipping = new Label(getMainComposite(), SWT.RIGHT);
shipping.setText("$ 0.00");
shipping.setLayoutData(new GridData(GridData.HORIZONTAL_ALIGN_END));

label = new Label(getMainComposite(), SWT.RIGHT);
label.setText("Total: ");
label.setFont(PresentationHelper.getInstance().getFont(

getParent().getDisplay(), SWT.BOLD));
label.setLayoutData(new GridData(GridData.HORIZONTAL_ALIGN_END

| GridData.FILL_HORIZONTAL));

total = new Label(getMainComposite(), SWT.RIGHT);
total.setText("$ 0.00");
total.setFont(PresentationHelper.getInstance().getFont(

getParent().getDisplay(), SWT.BOLD));
total.setLayoutData(new GridData(GridData.HORIZONTAL_ALIGN_END));

getCommandRegistry().registerCommand(orderViewer.getTable(),
Command.SELECT, 1, "Add item", "Add item",
new SelectionListenerAdapter() {

public void widgetSelected(SelectionEvent arg0) {

doAddItemCommand();
}

});

getCommandRegistry().registerCommand(orderViewer.getTable(),
Command.SELECT, 1, "Modify item", "Modify item",
new SelectionListenerAdapter() {

public void widgetSelected(SelectionEvent arg0) {

doModifyItemCommand();
}

});

getCommandRegistry().registerCommand(orderViewer.getTable(),
Command.SELECT, 1, "Delete item", "Delete item",
new SelectionListenerAdapter() {

public void widgetSelected(SelectionEvent arg0) {

doDeleteItemCommand();
}

});

getCommandRegistry().registerCommand(getMainComposite(),
Command.SELECT, 1, "Place order", "Place order",
new SelectionListenerAdapter() {

public void widgetSelected(SelectionEvent arg0) {
196 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

doPlaceOrderCommand();
}

});

getCommandRegistry().registerCommand(getMainComposite(),
Command.SELECT, 1, "Reset order", "Reset order",
new SelectionListenerAdapter() {

public void widgetSelected(SelectionEvent arg0) {

doResetOrderCommand();
}

});

getCommandRegistry().createCommands();
parent.layout();

}

/**
 * Reset an order by removing all these elements
 *
 */
protected void doResetOrderCommand() {

if (order.getLineItemsArray().length == 0) {
MessageDialog.openError(getParent().getShell(), "Empty order",

"Your order is empty!");
return;

}

if (MessageDialog.openQuestion(getParent().getShell(),
"Confirm deletion", "Are you sure?") == SWT.YES) {

order.removeAllLineItems();
refresh();

}

}

/**
 * Puts the order in the database
 *
 */
protected void doPlaceOrderCommand() {

try {
if (order.getLineItemsArray().length == 0) {

MessageDialog.openError(getParent().getShell(), "Empty order",
"Your order is empty!");

return;
}

long orderID = getOrderService().placeOrder(order);
MessageDialog.openInfo(getParent().getShell(), "Info",

"Your order has been successfully placed. Your order ID is "
+ orderID);

order.removeAllLineItems();
refresh();

} catch (RuntimeException e) {
MessageDialog
Chapter 8. eRCP sample scenario 197

.openError(getParent().getShell(), "Error",
"There's a problem with your order. Please try again later");

}
}

/**
 * Delete an item from the current order
 *
 */
protected void doDeleteItemCommand() {

LineItem item = (LineItem) ((IStructuredSelection) orderViewer
.getSelection()).getFirstElement();

if (item == null) {
MessageDialog.openInfo(getParent().getShell(), "Info",

"Please select an item");
return;

}

order.removeLineItem(item);
refresh();

}

/**
 * Updates the quantity of the selected item to a values entered by the user
 *
 */
protected void doModifyItemCommand() {

LineItem item = (LineItem) ((IStructuredSelection) orderViewer
.getSelection()).getFirstElement();

if (item == null) {
MessageDialog.openInfo(getParent().getShell(), "Info",

"Please select an item");
return;

}

int quantity = Integer.parseInt(MessageDialog.openQuery(getParent()
.getShell(), QueryDialog.NUMERIC, "Quantity: ", ""
+ item.getQuantity()));

if (quantity > 0) {

item.setQuantity(quantity);
} else {

order.removeLineItem(item);
}

refresh();
}

/**
 * Adds an item to the current order.
 *
 */
protected void doAddItemCommand() {

ProductDialog dialog = new ProductDialog(getParent());
dialog.open();
198 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Product product = dialog.getSelectedProduct();
if (product != null) {

int quantity = Integer.parseInt(MessageDialog.openQuery(getParent()
.getShell(), QueryDialog.NUMERIC, "Quantity: ", "1"));

order.addLineItem(product, quantity);
refresh();

}
}

/**
 * Sets the current customer for the order
 *
 * @param customer
 */
public void setCustomer(Customer customer) {

order.setCustomer(customer);

customerLabel.setText(customer.getName());
getMainComposite().layout();

}

/**
 * @return The order service
 */
protected OrderService getOrderService() {

return (OrderService) ServiceFactory.getInstance().getService(
ServiceFactory.ORDER_SERVICE);

}

/**
 * Refresh the window controls
 *
 */
protected void refresh() {

// Update listing
orderViewer.refresh();

// Update totals
subTotal.setText(PresentationHelper.getInstance().formatMoney(

order.getSubTotal()));
tax.setText(PresentationHelper.getInstance()

.formatMoney(order.getTax()));
shipping.setText(PresentationHelper.getInstance().formatMoney(

order.getShipping()));
total.setText(PresentationHelper.getInstance().formatMoney(

order.getTotal()));

getMainComposite().layout();
}

}

Chapter 8. eRCP sample scenario 199

3. To register the view with the eWorkbench, add the extension shown in Example 8-37 to
the plugin.xml file. Add the view entry to the extension org.eclipse.ui.views that you
added in Example 8-26 on page 181.

Example 8-37 TakeOrderView view extension

<view
allowMultiple="false"
category="org.eclipse.ercp.eworkbench.viewCategory"
class="com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.TakeOrderView"
icon="icons/sample.gif"
id="com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.TakeOrderView"
name="Take Order"/>

8.4.6 The dialogs package
The dialogs package contain the dialogs that are used by the views reviewed previously.
Generally, these dialogs are supportive elements for the views and, when properly designed,
can be reused by other applications. Figure 8-29 shows the classes that compose this
package.

Figure 8-29 The dialogs package

The core element in the dialogs package, is the MultiPageDialog class, part of the eSWT
Mobile Controls. Briefly, this class is a tabbed dialog that is very appropriate for mobile
devices because it saves space in the window. Refer to 4.3.1, “MultiPageDialog” on page 77
for more details about the MultiPageDialog class.
200 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

ProductDialog
The product dialog allows the user to select an available product. The dialog returns the
selected product to the caller. The dialog has two pages: one for the product listing and one
for the product detail. Figure 8-30 illustrates a sketch for the dialog.

Figure 8-30 ProductDialog sketch

The first tab displays the product photo, name, and price. The second one displays the same
information as the first one plus a description.

Follow these steps to create the ProductDialog class:

1. Select File → New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.dialogs as the package
name and ProductDialog as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-38. Save the changes.

Example 8-38 ProductDialog.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.dialogs;

import java.io.ByteArrayInputStream;

import org.eclipse.ercp.swt.mobile.ListBox;
import org.eclipse.ercp.swt.mobile.ListBoxItem;
import org.eclipse.ercp.swt.mobile.MultiPageDialog;
import org.eclipse.jface.resource.JFaceResources;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.graphics.Image;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;

import com.ibm.itsoral.ercpcasestudy.mobilestore.domain.Product;
import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.SelectionListenerAdapter;
import com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.PresentationHelper;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.ProductService;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.ServiceFactory;
Chapter 8. eRCP sample scenario 201

/**
 * The product dialog allows the user to select an available product. The dialog
 * will return the selected product to the caller. The dialog has two pages,
 * one for the product listing and one for the product detail.
 *
 */
public class ProductDialog {

private Object[] productArray;

private Product selectedProduct;

private Composite parent;

private MultiPageDialog multiPageDialog;

private Composite productListPage;

private Composite productDetailPage;

private ListBox productListBox;

private Label productImage;

private Label productName;

private Label productDescription;

private Label productPrice;

private Label priceLabel;

/**
 * Constructor for ProductDialog
 *
 * @param parent The parent composite for the associated MultiPageDialog
 */
public ProductDialog(Composite parent) {

this.parent = parent;

initialize();
}

/**
 * Initialize the dialog's controls
 *
 */
private void initialize() {

multiPageDialog = new MultiPageDialog(parent.getShell());

productListPage = createProductListPage();
productDetailPage = createProductDetailPage();

}

/**
 * Creates the product list page
202 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

 *
 * @return The page composite
 */
private Composite createProductListPage() {

Composite page = multiPageDialog.createPage("Product List", null);

page.setLayout(new GridLayout());
productListBox = new ListBox(page, SWT.SINGLE | SWT.V_SCROLL,

ListBox.LB_MOD_SHOW_HEADING_ICONS | ListBox.LB_STYLE_2LINE_ITEM);
productListBox.setLayoutData(new GridData(GridData.FILL_BOTH));
productListBox.setDataModel(createProductListDataModel());
productListBox.addSelectionListener(new SelectionListenerAdapter() {

public void widgetSelected(SelectionEvent e) {

doSelectProduct();

}
});
new Label(page, SWT.NONE).setLayoutData(new GridData(

GridData.FILL_HORIZONTAL));

page.layout();
return page;

}

/**
 * Updates the product details on the product details page
 */
private void doSelectProduct() {

selectedProduct = (Product) productArray[productListBox
.getSelectionIndices()[0]];

System.out.println("Selected " + selectedProduct.getName());

productImage.setImage(JFaceResources.getImageRegistry().get(
"product" + selectedProduct.getId()));

productName.setText(selectedProduct.getName());
productDescription.setText(selectedProduct.getDescription());
productPrice.setText(PresentationHelper.getInstance().formatMoney(

selectedProduct.getPrice()));
priceLabel.setVisible(true);
productDetailPage.layout();

}

/**
 * Creates the data model for the product list control
 *
 * @return The ListBoxItem array
 */
private ListBoxItem[] createProductListDataModel() {

productArray = getProductService().findAll().toArray();
ListBoxItem[] dataModel = new ListBoxItem[productArray.length];

for (int i = 0; i < productArray.length; i++) {

Product product = (Product) productArray[i];
Chapter 8. eRCP sample scenario 203

Image productImage = PresentationHelper.getInstance().getImage(
parent.getDisplay(), "product" + product.getId(),
new ByteArrayInputStream(product.getPhoto()));

dataModel[i] = new ListBoxItem("Price: "
+ PresentationHelper.getInstance().formatMoney(

product.getPrice()), null, PresentationHelper
.getInstance().wrapText(product.getName(), 25),
productImage);

}

return dataModel;
}

/**
 * Creates the product detail page
 *
 * @return The page composite
 */
private Composite createProductDetailPage() {

Composite page = multiPageDialog.createPage("Product Detail", null);
page.setLayout(new GridLayout(3, true));

productImage = new Label(page, SWT.CENTER);
productImage.setLayoutData(new GridData());
((GridData) productImage.getLayoutData()).verticalSpan = 3;
((GridData) productImage.getLayoutData()).verticalAlignment =

GridData.VERTICAL_ALIGN_BEGINNING;

productName = new Label(page, SWT.LEFT | SWT.WRAP);
productName.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
((GridData) productName.getLayoutData()).horizontalSpan = 2;
System.out.println(productName.getFont().getFontData()[0].getName());
productName.setFont(PresentationHelper.getInstance().getFont(

parent.getDisplay(), SWT.BOLD));

productDescription = new Label(page, SWT.LEFT | SWT.WRAP);
productDescription

.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
((GridData) productDescription.getLayoutData()).horizontalSpan = 2;
((GridData) productDescription.getLayoutData()).widthHint = (int) (page

.getSize().x * 0.75);

priceLabel = new Label(page, SWT.LEFT);
priceLabel.setText("Price: ");
priceLabel.setFont(PresentationHelper.getInstance().getFont(

parent.getDisplay(), SWT.BOLD | SWT.ITALIC));
priceLabel.setVisible(false);

productPrice = new Label(page, SWT.LEFT);
productPrice.setAlignment(SWT.RIGHT);

page.layout();
return page;

}

/**
 * @return The ProductService service
 */
private ProductService getProductService() {
204 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

return (ProductService) ServiceFactory.getInstance().getService(
ServiceFactory.PRODUCT_SERVICE);

}

/**
 * Opens the associated MultiPageDialog for this class.
 *
 */
public void open() {

multiPageDialog.open();

}

/**
 * @return The selected product
 */
public Product getSelectedProduct() {

return selectedProduct;
}

}

CustomerDetailsDialog
This dialog allows the user to view and edit information for a customer. It has three pages:
one for personal information, one for a shipping address, and one for a billing address.
Figure 8-31 shows a sketch for this dialog.

Figure 8-31 CustomerDetailsDialog sketch
Chapter 8. eRCP sample scenario 205

Follow these steps to create the CustomerDetailsDialog class:

1. Select File → New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.dialogs as the package
name and CustomerDetailsDialog as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-39. Save the changes.

Example 8-39 CustomerDetailsDialog.java

package com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.dialogs;

import java.util.Iterator;

import org.eclipse.ercp.swt.mobile.CaptionedControl;
import org.eclipse.ercp.swt.mobile.ConstrainedText;
import org.eclipse.ercp.swt.mobile.DateEditor;
import org.eclipse.ercp.swt.mobile.HyperLink;
import org.eclipse.ercp.swt.mobile.MultiPageDialog;
import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Combo;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.Text;

import com.ibm.itsoral.ercpcasestudy.mobilestore.domain.Customer;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.ConfigService;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.ServiceFactory;

/**
 * This dialogs allow to view and edit information for a customer. It has three
 * pages, one for editing personal information and the other two for editing the
 * shipping and billing address respectively.
 *
 */
public class CustomerDetailsDialog {

private static final int BILLING_ADDRESS = 0;

private static final int SHIPPING_ADDRESS = 1;

private Composite parent;

private Customer customerInfo;

private MultiPageDialog multiPageDialog;

private Composite personalInfoPage;

private Composite shippingAddressPage;

private Composite billingAddressPage;

private Label nameLabel;

private DateEditor birthDateEditor;

private HyperLink emailLink;
206 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

private HyperLink phoneLink;

private Text[] addressTextArray;

private Text[] cityTextArray;

private Combo[] stateComboArray;

private ConstrainedText[] zipTextArray;

private ConstrainedText[] phoneTextArray;

/**
 * Constructor for CustomerDetailsDialog
 *
 * @param parent
 * The parent composite for the MultiPageDialog
 *
 */
public CustomerDetailsDialog(Composite parent) {

this.parent = parent;

initialize();

}

/**
 * Initialize the dialog’s controls
 *
 */
private void initialize() {

addressTextArray = new Text[2];
cityTextArray = new Text[2];
stateComboArray = new Combo[2];
zipTextArray = new ConstrainedText[2];
phoneTextArray = new ConstrainedText[2];

multiPageDialog = new MultiPageDialog(parent.getShell());
personalInfoPage = createPersonalInfoPage();
shippingAddressPage = createAddressPage("Shipping Info",

SHIPPING_ADDRESS);
billingAddressPage = createAddressPage("Billing Info", BILLING_ADDRESS);

}

/**
 * Creates an customer address page
 *
 * @param title
 * Title for the page
 * @param type
 * Page type. Could be SHIPPING_ADDRESS or BILLING_ADDRESS
 * @return The page composite
 */
private Composite createAddressPage(String title, int type) {

Composite page = multiPageDialog.createPage(title, null);

page.setLayout(new GridLayout(2, false));
Chapter 8. eRCP sample scenario 207

new Label(page, SWT.LEFT).setText("Address: ");
addressTextArray[type] = new Text(page, SWT.BORDER | SWT.MULTI

| SWT.WRAP);
addressTextArray[type].setLayoutData(new GridData(

GridData.FILL_HORIZONTAL));
((GridData) addressTextArray[type].getLayoutData()).heightHint = 40;

new Label(page, SWT.LEFT).setText("City: ");
cityTextArray[type] = new Text(page, SWT.BORDER | SWT.SINGLE);

new Label(page, SWT.LEFT).setText("State: ");
stateComboArray[type] = new Combo(page, SWT.SINGLE | SWT.READ_ONLY);

for (Iterator it = getConfigService().getParameters(
ConfigService.STATE_PARAM).iterator(); it.hasNext(); stateComboArray[type]
.add((String) it.next()))

;

new Label(page, SWT.LEFT).setText("Zip: ");
zipTextArray[type] = new ConstrainedText(page, SWT.BORDER,

ConstrainedText.NUMERIC);
zipTextArray[type].setTextLimit(5);

new Label(page, SWT.LEFT).setText("Phone: ");
phoneTextArray[type] = new ConstrainedText(page, SWT.BORDER,

ConstrainedText.PHONENUMBER);
phoneTextArray[type].setTextLimit(10);
page.layout();

return page;
}

/**
 * Creates the page for editing customer personal information
 *
 * @return The page composite
 */
private Composite createPersonalInfoPage() {

Composite page = multiPageDialog.createPage("Personal Info", null);

page.setLayout(new GridLayout());

CaptionedControl cc = new CaptionedControl(page, SWT.RIGHT_TO_LEFT);
cc.setText("Name: ");
nameLabel = new Label(cc, SWT.SINGLE);

cc = new CaptionedControl(page, SWT.LEFT_TO_RIGHT);
cc.setText("Birth Date: ");
birthDateEditor = new DateEditor(cc, DateEditor.DATE);

cc = new CaptionedControl(page, SWT.LEFT_TO_RIGHT);
cc.setText("Email: ");
emailLink = new HyperLink(cc, SWT.BORDER, HyperLink.EMAIL);

cc = new CaptionedControl(page, SWT.LEFT_TO_RIGHT);
cc.setText("Phone: ");
phoneLink = new HyperLink(cc, SWT.BORDER, HyperLink.PHONE);
208 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

page.layout();

return page;
}

/**
 * Opens the associated MultiPageDialog
 *
 */
public void open() {

multiPageDialog.open();
}

/**
 * @return The modified customer information
 */
public Customer getCustomerInfo() {

customerInfo.setBirthDate(birthDateEditor.getDate());

customerInfo.getBillingAddress().setAddress(
addressTextArray[BILLING_ADDRESS].getText());

customerInfo.getBillingAddress().setCity(
cityTextArray[BILLING_ADDRESS].getText());

customerInfo.getBillingAddress().setZip(
zipTextArray[BILLING_ADDRESS].getText());

customerInfo.getBillingAddress().setPhone(
phoneTextArray[BILLING_ADDRESS].getText());

customerInfo.getBillingAddress().setState(
stateComboArray[BILLING_ADDRESS].getText());

customerInfo.getShippingAddress().setAddress(
addressTextArray[SHIPPING_ADDRESS].getText());

customerInfo.getShippingAddress().setCity(
cityTextArray[SHIPPING_ADDRESS].getText());

customerInfo.getShippingAddress().setZip(
zipTextArray[SHIPPING_ADDRESS].getText());

customerInfo.getShippingAddress().setPhone(
phoneTextArray[SHIPPING_ADDRESS].getText());

customerInfo.getShippingAddress().setState(
stateComboArray[SHIPPING_ADDRESS].getText());

return customerInfo;
}

/**
 * Sets the customer information to be modified in the dialog
 *
 * @param customerInfo
 * The original customer information
 */
public void setCustomerInfo(Customer customerInfo) {

this.customerInfo = customerInfo;

nameLabel.setText(customerInfo.getName());
birthDateEditor.setDate(customerInfo.getBirthDate());
emailLink.setText(customerInfo.getEmail());
phoneLink.setText(customerInfo.getPhone());

addressTextArray[SHIPPING_ADDRESS].setText(customerInfo
.getShippingAddress().getAddress());
Chapter 8. eRCP sample scenario 209

cityTextArray[SHIPPING_ADDRESS].setText(customerInfo
.getShippingAddress().getCity());

stateComboArray[SHIPPING_ADDRESS]
.select(stateComboArray[SHIPPING_ADDRESS].indexOf(customerInfo

.getShippingAddress().getState()));
zipTextArray[SHIPPING_ADDRESS].setText(customerInfo

.getShippingAddress().getZip());
phoneTextArray[SHIPPING_ADDRESS].setText(customerInfo

.getShippingAddress().getPhone());

addressTextArray[BILLING_ADDRESS].setText(customerInfo
.getBillingAddress().getAddress());

cityTextArray[BILLING_ADDRESS].setText(customerInfo.getBillingAddress()
.getCity());

stateComboArray[BILLING_ADDRESS]
.select(stateComboArray[BILLING_ADDRESS].indexOf(customerInfo

.getBillingAddress().getState()));
zipTextArray[BILLING_ADDRESS].setText(customerInfo.getBillingAddress()

.getZip());
phoneTextArray[BILLING_ADDRESS].setText(customerInfo

.getBillingAddress().getPhone());

personalInfoPage.layout();
}

/**
 * @return The ConfigService service
 */
private ConfigService getConfigService() {

return (ConfigService) ServiceFactory.getInstance().getService(
ServiceFactory.CONFIG_SERVICE);

}

8.5 Managing exceptions
Error handling is a common task in application development and one that you cannot avoid.
For ITSO Mobile Store, the exceptions are managed in a centralized way using the
ExceptionManager class. This class allows the application to handle exceptions simply and
consistently.

8.5.1 The ExceptionManager class
The ExceptionManager class provides a centralized point to deal with error conditions. For
critical exceptions, it provides a method that logs the message and rethrows the exception as
a RuntimeException. For non-critical exceptions, it provides a method to log the exact
exception message and to show a human-readable friendly message to the user. This
strategy to manage the exceptions was chosen because of its simplicity.
210 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Follow these steps to create the ExceptionManager class:

1. Select File → New → Class from the menu bar. Enter
com.ibm.itsoral.ercpcasestudy.mobilestore as the package name and
ExceptionManager as the class name. Click Finish.

2. Replace the newly generated class with the code in Example 8-40. Save the changes.

Example 8-40 ExceptionManager.java

package com.ibm.itsoral.ercpcasestudy.mobilestore;

import java.sql.SQLException;

import org.eclipse.swt.widgets.Shell;

import com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.MessageDialog;

/**
 * Manages the exceptions thrown by the application in a centralized way.
 */
public class ExceptionManager {

private static ExceptionManager instance;

/**
 * Constructor
 *
 */
protected ExceptionManager() {

}

/**
 * @return The unique instance for this class
 */
public static ExceptionManager getInstance() {

if (instance == null) instance = new ExceptionManager();

return instance;
}

/**
 * Handles an exception rethrowing it as a RuntimException
 *
 * @param source The object that throws the exception
 * @param e The exception thrown
 */
public void handleException(Object source, Throwable e) {

handleException(source, e, true);

}

/**
 * Handles an exception by log it to the standard ouput.
 *
 * @param source The exception originator
 * @param e The exception thrown
 */
Chapter 8. eRCP sample scenario 211

public void handleException(Object source, Throwable e, boolean rethrowAsRuntime) {
String errorMessage = e.getMessage();

if (e instanceof SQLException) {
SQLException sqle = (SQLException) e;
errorMessage = "SQLSTATE: "+sqle.getSQLState()+

". Error code: "+sqle.getErrorCode();
}

System.out.println("Error: "+errorMessage);
System.out.flush();
e.printStackTrace();

if (rethrowAsRuntime)
throw new RuntimeException(errorMessage);

}

/**
 * Handles an exception by log it in the standard output and by showing a dialog
 * with an user-friendly message
 *
 * @param source The exception source
 * @param e The exception thrown
 * @param shell The application shell window
 * @param message The message to show
 */
public void handleException(Object source, Throwable e, Shell shell, String message) {

handleException(source, e, false);

MessageDialog.openError(shell, "Error", message);

}

}

8.6 The Mobile Store plug-in
Now that you have all the application classes in place, you need to modify the
MobileStorePlugin class to add some initialization and cleanup code. Also, you need to
declare that the ITSO Mobile Store application is an eWorkbench application.

8.6.1 The MobileStorePlugin class
In 8.4.4, “The preferences package” on page 165, we discussed some default values for the
preferences values that you need to set. The natural place to put this initialization code is in
the plug-in activator start() method. The plug-in activator class for the application is
MobileStorePlugin. Also, in “PresentationHelper” on page 158, we discussed that the fonts
need to be disposed when the application is closed to free the associated system resources.
The natural place to put cleanup code at the application level is in the plug-in activator stop()
method.
212 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Follow these steps to modify the MobileStorePlugin class:

1. Open the generated MobileStorePlugin that is located at the
com.ibm.itsoral.ercpcasestudy.mobilestore package.

2. Replace the existing class code with the code in Example 8-41. Save the changes.

Example 8-41 MobileStorePlugin.java

package com.ibm.itsoral.ercpcasestudy.mobilestore;

import org.eclipse.jface.resource.ImageDescriptor;
import org.eclipse.ui.plugin.AbstractUIPlugin;
import org.osgi.framework.BundleContext;

import
com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.preferences.MainPreferencesPage;
import com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.util.PresentationHelper;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.ConfigService;
import com.ibm.itsoral.ercpcasestudy.mobilestore.services.ServiceFactory;

/**
 * The main plugin class to be used in the desktop.
 */
public class MobileStorePlugin extends AbstractUIPlugin {

// The shared instance.
private static MobileStorePlugin plugin;

/**
 * The constructor.
 */
public MobileStorePlugin() {

plugin = this;
}

/**
 * This method is called upon plug-in activation
 */
public void start(BundleContext context) throws Exception {

super.start(context);

initApplication();
}

/**
 * Initialiaze the application default preferences values.
 * Also sets up the location for the local database
 *
 */
private void initApplication() {

try {
// Setup the default for preferences in case they aren't set by the user
getPreferenceStore().setDefault(

MainPreferencesPage.P_DATABASE_LOCATION, "\\sampledb\\");
getPreferenceStore().setDefault(

MainPreferencesPage.P_STANDALONE_MODE, true);

// Set the database location for the application
ConfigService service = (ConfigService) ServiceFactory

.getInstance().getService(ServiceFactory.CONFIG_SERVICE);
Chapter 8. eRCP sample scenario 213

service.setDatabaseLocation(getPreferenceStore().getDefaultString(
MainPreferencesPage.P_DATABASE_LOCATION));

} catch (Throwable t) {
ExceptionManager.getInstance().handleException(this, t);

}
}

/**
 * This method is called when the plug-in is stopped
 */
public void stop(BundleContext context) throws Exception {

super.stop(context);
plugin = null;

PresentationHelper.getInstance().disposeFonts();
}

/**
 * Returns the shared instance.
 */
public static MobileStorePlugin getDefault() {

return plugin;
}

/**
 * Returns an image descriptor for the image file at the given plug-in
 * relative path.
 *
 * @param path
 * the path
 * @return the image descriptor
 */
public static ImageDescriptor getImageDescriptor(String path) {

return AbstractUIPlugin.imageDescriptorFromPlugin(
"com.ibm.itsoral.ercpcasestudy.mobilestore", path);

}
}

8.6.2 The eWorkbench application extension
Every application that runs in eWorkbench has to declare an extension in the plugin.xml file.
Example 8-42 shows the format for the extension.

Example 8-42 eWorkbench application extension

<extension point="org.eclipse.ercp.eworkbench.applications">
<application id="<APPLICATION_ID>" name="<APPLICATION_NAME>">

<views normal="<STARTING_VIEW_ID>"/>
</application>

</extension>
214 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

For the ITSO Mobile Store application, Example 8-43 shows the extension. Add this
extension to the application plugin.xml file.

Example 8-43 ITSO Mobile Store application extension

<extension point="org.eclipse.ercp.eworkbench.applications">
 <application
 id="com.ibm.itsoral.ercpcasestudy.mobilestore"
 name="ITSO Mobile Store">
 <views
normal="com.ibm.itsoral.ercpcasestudy.mobilestore.presentation.views.ModuleSelectorView"/>
 </application>
 </extension>

8.7 Running the ITSO Mobile Store application
Now it is time of some testing. You need to create a new Eclipse Application launch
configuration. Make sure that you have followed all the steps to set up the environment as
described in 8.1, “Preparing the environment” on page 130.

Follow these steps to create the launch configuration and test the application on Win32:

1. Select Run → Run from the menu bar. Select Eclipse Application and click New.

2. Enter ITSO Mobile Store as the configuration name. Note that the
org.eclipse.ercp.eworkbench.eWorkbench application is selected, as shown in
Figure 8-32.

Figure 8-32 Creating the launch configuration

3. Select Foundation profile JRE as the Runtime JRE. Click Apply and then Run.
Chapter 8. eRCP sample scenario 215

The eWorkbench window opens.

4. Select ITSO Mobile Store. The ITSO Mobile Store main view (ModuleSelectorView)
opens.

You need to create and populate the database first.

5. Select Synchronize. The synchronization window (SynchronizeView) opens. Figure 8-33
shows the windows sequence.

Figure 8-33 Testing the application

6. Select Command → Preferences to see the application preferences
(MainPreferencesPage). Set a local directory for the database files as shown in
Figure 8-34. The directory must exist. Click the X located in the upper, left corner to accept
the changes and close the dialog.

Figure 8-34 Setting the preferences on the desktop

7. Select Command → Sync from the menu. The database creation begins. At the end of
the process, an information message informing the synchronization status displays. Click
OK. Figure 8-35 shows the windows sequence.
216 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Figure 8-35 Testing the sync capabilities

8. Select Command → Back to return to the module selector view. Select Mobile Store.
The CustomerList view opens. You can browse the window to the see all the registered
customers. Figure 8-36 shows the windows sequence.

Figure 8-36 Testing the customer list

9. Select a customer from the list and select Command → View / Edit to open the customer
details dialog. The dialog has three pages, or tabs, for personal information, shipping
address, and billing address.

10.Select the billing address page. Modify some values. Click the X in the upper, left corner to
close the dialog. The changes are saved automatically. Figure 8-37 shows the windows
sequence.

Figure 8-37 Testing the customer details dialog
Chapter 8. eRCP sample scenario 217

11.Select another customer and select Command → Take Order. The Take Order view
opens (TakeOrderView class). The order belongs to the customer that you previously
selected. Note that the order is empty.

12.Add a product to the order. Select Command → Add item. Figure 8-38 shows the
windows sequence.

Figure 8-38 Testing the take order view

13.The product list dialog opens (ProductDialog class). Select a product from the product list.
Go to the product details page. You see a brief description of the product. Click the X
located in the upper, left corner to close the dialog. A dialog prompts you for the quantity.
Enter a number or accept the default, and click OK. Figure 8-39 shows the windows
sequence.

Figure 8-39 Testing the product list dialog
218 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

14.Note that the order now has an item on it and that the fields reflect this fact. Add other
items if you want and test some of the other available commands, such as modify item,
delete item, and so on.

15.Select Command → Place order to register the order in the database. An order ID is
generated.

16.Click OK to close the information dialog. Close the application. Figure 8-40 shows the
windows sequence.

Figure 8-40 Testing the place order feature

8.8 Deploying and running the application in the mobile device
At this time, you can run the application in the mobile device. Make sure that you have
followed all the steps to set up the environment as described in 8.1, “Preparing the
environment” on page 130.

Follow these steps to deploy and to test the application in your WM2003 device:

1. Deploy the JRE for WM2003.
2. Deploy the eRCP Runtime for WM2003.
3. Copy the database libraries to the device.
4. Deploy the application to the eRCP runtime.
5. Test the application.

8.8.1 Deploying the JRE for WM2003
You need to deploy the JRE in the WM2003 device. The JRE for is provided as part of the
Workplace Client Technology, Micro Edition environment that you installed in 8.1.3, “Installing
Workplace Client Technology Micro Edition for Windows” on page 132. For WM2003 the JRE
is conveniently packaged as a CAB file. Follow these steps to install the JRE for WM2003.

To deploy the JRD for WM2003:

1. Make sure that your device is connected to your desktop using the ActiveSync® software.
Refer to your device vendor documentation for more information about this step.
Chapter 8. eRCP sample scenario 219

2. Locate the JRE Foundation Profile for WM2003 CAB file. It should be located at the
Workplace Client Technology, Micro Edition Toolkit installation directory, for example:

C:\Program Files\IBM\DeviceDeveloper \wsdd5.0\ive-2.2\runtimes\wm2003\
arm\foundation10\cab

The CAB file to install is named j9-foun10-wm2003-arm_22.cab.

3. Copy the CAB file to a folder in your device, for example \Temp and tap it. Wait while the
Foundation Profile is installed. The Foundation Profile should has been installed in
\Program Files\J9.

8.8.2 Deploying the eRCP runtime for WM2003
If you have followed the steps to prepare the eRCP environment as described in 8.1.4,
“Installing the eRCP runtimes” on page 133, deploying the eRCP runtime to the mobile
devices involves no more than copying the files to the root folder on the device. Follow these
steps:

1. Make sure that your device is connected to your desktop using the ActiveSync software.
Refer to your device vendor documentation for more information about this step.

2. Copy the eRCP directory from the desktop location (for example,
C:\eRCP-v20060118-1017\wm2003) to the root directory of the mobile device.

8.8.3 Copying the database libraries to the device
As discussed in 8.1.7, “Configuring the environment to use the database components” on
page 136, you need to copy certain native libraries to the JRE bin directory. Follow these
steps:

1. Locate the DB2 Everyplace natives libraries for the WM2003 platform. They should be
located in the Device Developer directory, for example:

C:\Program Files\IBM \DeviceDeveloper\wsdd5.0\technologies\eswe\files\db2e\
wince\wce400\arm

They are:

– DB2e.dll, the DB2e engine
– DB2EJDBC.dll, the DB2e JDBC driver native support

2. Copy the libraries in the JRE bin directory on the device (for example, \Program Files
\J9\FOUN10\bin).

3. Copy the jdbc.jar library, located in the Workplace Client Technology, Micro Edition Toolkit
directory (for example C:\Program Files\IBM\DeviceDeveloper\wsdd5.0\technologies\
eswe\bundlefiles) to the ext directory of the device JRE located for example at \Program
Files\J9\FOUN10\lib \jclFoundation10 on the device. Create the directory if it does not
exists. Remember that you also copied this library to the eRCP Runtime plug-ins directory
for Win32 and WM2003.

Note: By default the JRE looks for any java.* classes in libraries that are located in the ext
directory. Also, the DB2e.jar has a declared dependency with the jdbc.jar bundle in its
deployment descriptor. So, it is necessary to copy the library to the eRCP runtime plug-ins
directory as described in 8.1.7, “Configuring the environment to use the database
components” on page 136.
220 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

8.8.4 Deploying the application
To deploy the application, you need to export the application as a plug-in. Then, you need to
copy this plug-in to the eRCP Runtime plug-ins directory. Follow these steps:

1. Start the Eclipse SDK, if it is not already started. Right-click the project name and select
Export. Select Deployable plug-ins and fragments as shown in Figure 8-41. Click Next.

Figure 8-41 Deploying the application as a plug-in
Chapter 8. eRCP sample scenario 221

2. Make sure that the application plug-in is selected. Click Browse and select a directory in
which to place the plug-in file. Note that the plug-in is deployed as a JAR file, as shown in
Figure 8-42. Click Finish.

Figure 8-42 Specifying the option for plug-in exporting

3. Wait while the plug-in is exported. The resulting plug-in should be a file located in the
directory that you selected in the previous step (for example, plugins\com.ibm.itsoral.
ercpcasestudy.mobilestore_1.0.0.jar). Copy this file to the eRCP Runtime plug-ins
directory, located at \eRCP\plugins in your device.
222 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

8.8.5 Running the application
Now that you have all the components in place, you can run the application in the mobile
device. Follow these steps:

1. Enter to the \eRCP directory in your device and tap the j9foun-eworkbench icon. Wait
while the eWorkbench loads. Select ITSO Mobile Store and then Synchronization.
Figure 8-43 shows the windows sequence.

Figure 8-43 Testing the application on the WM2003 device

2. Select Command → Preferences from the menu bar, enter a location for the local
database, and click OK.

3. Select Command → Sync and wait while the database is created and populated. Click
OK in the sync status dialog.
Chapter 8. eRCP sample scenario 223

4. Select Command → Back to return to the Module Selector view. Figure 8-44 shows the
windows sequence.

Figure 8-44 Testing the preferences and synchronization features on the WM2003 device

5. Select Mobile Store in the module selector view. The customer list information displays,
as shown in Figure 8-45.

Figure 8-45 Testing the customer list on the WM2003 device

You can keep testing the application, using the steps that are described in 8.7, “Running the
ITSO Mobile Store application” on page 215 as a guide.
224 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Appendix A. Additional material

This appendix describes how to download additional material from the Internet as described
throughout this Redpaper.

Locating the Web material
The Web material that is associated with this Redpaper is available in softcopy on the Internet
from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/REDP4118

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the Redpaper form
number, REDP4118.

A

© Copyright IBM Corp. 2006. All rights reserved. 225

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this Redpaper includes the following files:

File name Description
redp4118.zip Sample code

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 40 GB minimum
Operating System: Windows
Processor: 1 GH or higher
Memory: 1 GB

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the Web
material zipped file into this folder.
226 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

Related publications

This section lists the publications that are considered particularly suitable for a more detailed
discussion of the topics that we cover in this Redpaper.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 227. Note that some of the documents referenced here might be available in softcopy
only.

� IBM WebSphere Everyplace Deployment V6 Handbook for Developers and
Administrators Volume II: Smart Client Application Development, SG24-7183

Other publications
These publications are also relevant as further information sources:

� Java Developer's Guide to Eclipse, 0321159640
� Eclipse: Building Commercial-Quality Plug-ins, 032142672X

Online resources
These Web sites and URLs are also relevant as further information sources:

� Eclipsepedia

http://wiki.eclipse.org

� Eclipse Web site

http://www.eclipse.org

� Eclipse eRCP project site

http://www.eclipse.org/proposals/eclipse-ercp/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks
© Copyright IBM Corp. 2006. All rights reserved. 227

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://wiki.eclipse.org
http://www.eclipse.org
http://www.eclipse.org/proposals/eclipse-ercp/

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
228 The Eclipse embedded Rich Client Platform: A Graphical User Interface for Small Devices

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

®

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Redpaper

The Eclipse embedded
Rich Client Platform
A Graphical User Interface for Small Devices

Understand eRCP
applications for
embedded mobile
devices

Learn about the
embedded Standard
Widget Toolkit (eSWT)

Develop eJFace
applications using the
eWorkbench
application model

The embedded Rich Client Platform (eRCP) is an open source
project under the Eclipse Technology Project using OSGi
standards. This IBM Redpaper covers the eRCP Extension Point
Framework as the basis for creating embedded client platforms
and implementing eSWT, eJFace, and eWorkbench for
embedded devices having fewer resources and smaller screen
sizes than a desktop computer.

In this redpaper, you will find information about what APIs, as a
subset of SWT for desktops, are available and apply to Eclipse
eSWT basic components, including Core eSWT and Expanded
eSWT. You will also find information to better use JFace as a
means for providing model, view, and controller mobile
application paradigms.

This redpaper includes also a sample scenario chosen to
illustrate how eRCP applications are developed to access a local
database using DB2 Everyplace. You will find the elements of the
business processes being put into place, and understand what
technologies were chosen to solve the different parts of the
implementation. The sample scenario includes step by step
guidelines to use the proper tools, runtimes, and APIs needed to
build, test and deploy an eRCP application for small devices.

A basic knowledge of Java programming and Java technologies
is required.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this Redpaper
	Become a published author
	Comments welcome

	Chapter 1. Introduction to eRCP
	1.1 Rich Client Platform
	1.2 The embedded Rich Client Platform
	1.3 Terminology
	1.3.1 Eclipse
	1.3.2 Java 2 Micro Edition
	1.3.3 Open Service Gateway initiative
	1.3.4 Service Management Framework

	1.4 Technology overview
	1.4.1 The eRCP core
	1.4.2 The embedded Standard Widget Toolkit
	1.4.3 The embedded JFace
	1.4.4 The embedded Workbench
	1.4.5 eUpdate

	Chapter 2. eSWT fundamentals
	2.1 eSWT packaging
	2.1.1 eSWT core
	2.1.2 eSWT expanded
	2.1.3 eSWT mobile extensions

	2.2 Creating a complete eSWT program
	2.3 The Display class
	2.3.1 Events and listeners
	2.3.2 Event filters
	2.3.3 Shells and focus control
	2.3.4 System information

	2.4 Composite and shell
	2.4.1 Composite
	2.4.2 Shell

	2.5 Events and listeners
	2.5.1 Untyped listeners
	2.5.2 Typed listeners

	2.6 Mouse
	2.7 Keyboard
	2.7.1 Keyboard events
	2.7.2 Focus events
	2.7.3 Key events
	2.7.4 Accelerators

	Chapter 3. eSWT core
	3.1 Controls
	3.1.1 Label
	3.1.2 Button
	3.1.3 Text
	3.1.4 List
	3.1.5 Combo box
	3.1.6 Dialog window
	3.1.7 MessageBox
	3.1.8 FileDialog
	3.1.9 Menu
	3.1.10 ScrollBar and Slider widgets
	3.1.11 ProgressBar

	3.2 Layouts
	3.2.1 FormLayout

	Chapter 4. eSWT mobile extensions
	4.1 Controls
	4.1.1 CaptionedControl
	4.1.2 ConstrainedText
	4.1.3 HyperLink
	4.1.4 DateEditor
	4.1.5 ListBox
	4.1.6 ListView
	4.1.7 MobileShell
	4.1.8 SortedList
	4.1.9 TextExtension

	4.2 Widgets
	4.2.1 TaskTip

	4.3 Dialogs
	4.3.1 MultiPageDialog
	4.3.2 TimedMessageBox

	4.4 Items
	4.4.1 Command

	4.5 Device-related
	4.5.1 MobileDevice
	4.5.2 Screen
	4.5.3 Input

	Chapter 5. eSWT expanded
	5.1 Layouts
	5.1.1 FillLayout
	5.1.2 RowLayout
	5.1.3 GridLayout
	5.1.4 ColorDialog
	5.1.5 DirectoryDialog
	5.1.6 FontDialog
	5.1.7 Table
	5.1.8 Tree
	5.1.9 Browser

	Chapter 6. eJFace applications
	6.1 eJFace fundamentals
	6.2 Viewers
	6.2.1 Viewer framework
	6.2.2 Viewers
	6.2.3 Content viewers
	6.2.4 Structured viewers
	6.2.5 Viewer types

	6.3 Operations
	6.4 Resource management
	6.5 Preferences
	6.5.1 Preference storage
	6.5.2 Preference dialogs

	Chapter 7. eRCP eWorkbench
	7.1 Introduction
	7.2 Developing for the eWorkbench
	7.2.1 Creating your plug-in
	7.2.2 Defining you views
	7.2.3 Defining your application

	Chapter 8. eRCP sample scenario
	8.1 Preparing the environment
	8.1.1 The eRCP development environment
	8.1.2 Installing the Eclipse SDK
	8.1.3 Installing Workplace Client Technology Micro Edition for Windows
	8.1.4 Installing the eRCP runtimes
	8.1.5 Database support for small devices
	8.1.6 Installing Workplace Client Technology, Micro Edition database components
	8.1.7 Configuring the environment to use the database components

	8.2 Configuring Eclipse and creating the eRCP project
	8.2.1 Configuring eRCP as the Eclipse target platform
	8.2.2 Adding Foundation Profile as an Eclipse JRE
	8.2.3 Creating the ITSO Mobile Store project

	8.3 Designing the ITSO Mobile Store application
	8.3.1 ITSO Mobile Store architecture
	8.3.2 Enterprise Resources layer
	8.3.3 Domain layer
	8.3.4 Data Access Objects layer
	8.3.5 Services layer
	8.3.6 Presentation layer
	8.3.7 Importing the ITSO Mobile Store code

	8.4 Developing the presentation layer using eRCP
	8.4.1 The command package
	8.4.2 The util package
	8.4.3 The resources package
	8.4.4 The preferences package
	8.4.5 The views package
	8.4.6 The dialogs package

	8.5 Managing exceptions
	8.5.1 The ExceptionManager class

	8.6 The Mobile Store plug-in
	8.6.1 The MobileStorePlugin class
	8.6.2 The eWorkbench application extension

	8.7 Running the ITSO Mobile Store application
	8.8 Deploying and running the application in the mobile device
	8.8.1 Deploying the JRE for WM2003
	8.8.2 Deploying the eRCP runtime for WM2003
	8.8.3 Copying the database libraries to the device
	8.8.4 Deploying the application
	8.8.5 Running the application

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Back cover

